Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 83(23): 14743-14750, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30398359

RESUMO

This report explains an efficient method for synthesis of an array of quinolines via the reaction of 2-aminoaryl ketones with terminal and internal alkynes in the presence of propylphosphonium tetrachloroindate ionic liquid supported on nanosilica (PPInCl-nSiO2) as a heterogeneous and reusable catalyst under solvent-free conditions. Inspired by this catalytic system, the first easy one-step synthesis of symmetric and unsymmetric pyrido[3,2- g or 2,3- g]quinolines was investigated through the reaction of diaroylphenylenediamines with one alkyne or two different alkynes.

2.
Langmuir ; 33(34): 8503-8515, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28732161

RESUMO

Owing to properties of magnetic nanoparticles and elegant three-dimensional macromolecule architectural features, dendrimeric structures have been investigated as nanoscale drug delivery systems. In this work, a novel magnetic nanocarrier, generation two (G2) triazine dendrimer modified Fe3O4@SiO2 magnetic nanoparticles (MNP-G2), was designed, fabricated, and characterized by Fourier transform infrared (FT-IR), thermal gravimetric analysis (TGA), vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The prepared MNP-G2 nanosystem offers a new formulation that combines the unique properties of MNPs and triazine dendrimer as a biocompatible material for biomedical applications. To demonstrate the potential of MNP-G2, the nanoparticles were loaded with methotrexate (MTX), a proven chemotherapy drug. The MTX-loaded MNP-G2 (MNP-G2/MTX) exhibited a high drug-loading capacity of MTX and the excellent ability for controlled drug release. The cytotoxicity of MNP-G2/MTX using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide based assay and MCF-7, HeLa, and Caov-4 cell lines revealed that MNP-G2/MTX was more active against the tumor cells than the free drug in a mildly acidic environment. The results of hemolysis, hemagglutination, and coagulation assays confirmed the good blood safety of MNP-G2/MTX. Moreover, the cell uptake and intracellular distribution of MNP-G2/MTX were studied by flow cytometry analysis and confocal laser scanning microscopy (CLSM). This research suggests that MNP-G2/MTX with good biocompatibility and degradability can be selected as an ideal and effective drug carrier in targeted biomedicine studies especially anticancer applications.


Assuntos
Nanopartículas de Magnetita , Dendrímeros , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Triazinas
3.
Langmuir ; 31(42): 11659-70, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26421504

RESUMO

This study is an attempt to give an account of the preparation of mesoporous TiO2 thick templated films of nonsimilar pore architecture and their use in dye-sensitized solar cells (DSSCs). Highly crystallized mesoporous titania thick templated films with four different morphologies including hexagonal, wormlike, cubic, and gridlike mesostructure, have been successfully synthesized through an evaporation-induced self-assembly (EISA) route followed by layer-by-layer deposition. Stabilization, followed by each coating, and calcinations, carried out after every five layers, were used to produce crack-free thick films. These mesoporous templated titanium dioxide samples were characterized by TEM, XRD, SEM, BET, and UV-vis measurements and used as a photoelectrode material in DSSCs. The mesostructured films with a thickness of about 7 µm demonstrated better performance in comparison to nanocrystalline TiO2 films (NC-TiO2) at a film thickness of 13 µm as the most typical films utilized in DSSCs. The findings reveal that a surfactant/Ti ratio change undergone for developing cubic mesostructures can enhance the crystallinity and roughness factor and therefore increase the energy conversion efficiency of DSSC. The cell performances derived from these mesofilms were enhanced compared to the efficiencies reported thus far. The best photovoltaic performance of 8.73% came from DSSC using the cubic mesoporous TiO2 photoelectrode with the following properties: open circuit voltage of 743 mV, short circuit photocurrent density of 16.35 mA/cm(2), and fill factor of 0.72.

4.
Langmuir ; 31(33): 9219-27, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26258956

RESUMO

Although several strategies are now available for immobilization of enzymes to magnetic nanoparticles for bioapplications, little progresses have been reported on the use of dendritic or hyperbranched polymers for the same purpose. Herein, we demonstrated synthesis of magnetic nanoparticles supported hyperbranched polyglycerol (MNP/HPG) and a derivative conjugated with citric acid (MNP/HPG-CA) as unique and convenient nanoplatforms for immobilization of enzymes. Then, an important industrial enzyme, xylanase, was immobilized on the nanocarriers to produce robust biocatalysts. A variety of analytical tools were used to study the morphological, structural, and chemical properties of the biocatalysts. Additionally, the results of biocatalyst systems exhibited the substantial improvement of reactivity, reusability, and stability of xylanase due to this strategy, which might confer them a wider range of applications.


Assuntos
Ascomicetos/enzimologia , Endo-1,4-beta-Xilanases/química , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Nanopartículas/química , Polietilenoglicóis/química , Catálise , Campos Magnéticos
5.
J Org Chem ; 79(3): 1437-43, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24392962

RESUMO

An efficient, atom-economical, and regioselective synthesis of a wide range of 1,4-disubstituted 1,2,3-triazoles in excellent yields has been achieved via a one-pot three-component reaction of alkynes and sodium azide with organic halides or α-bromo ketones catalyzed by Cu(II)-TD@nSiO2/sodium ascorbate at room temperature. This catalytic system also showed excellent activity in the synthesis of bis- and tris-1,4-substituted 1,2,3-triazoles. Moreover, the catalyst could be recycled and reused for seven cycles without any loss in its catalytic activity.

6.
Phys Chem Chem Phys ; 16(6): 2417-24, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24358475

RESUMO

Excited state reaction coordinates and the consequent energy profiles of a new Schiff base, N-salicilydenemethylfurylamine (SMFA), have been investigated with the CC2 method, which is a simplified version of singles-and-doubles coupled cluster theory. The potential energy profiles of the ground and the lowest excited singlet state are calculated. In contrast to the ground state, the excited state potential energy profile shows a barrier-less dissociation pattern along the O-H stretching coordinate which verifies the proton transfer reaction at the S1 (ππ*) state. The calculations indicate two S1/S0 conical intersections (CIs) which provide non-adiabatic gates for radiation-less decay to the ground state. At the CIs, two barrier-free reaction coordinates direct the excited system to the ground state of enol-type minimum. According to calculation results, a trans-keto type structure obtained from photoexcitation of the enol, can be responsible for the photochromoic effect of SMFA. Furthermore, our results confirm the suggestion that aromatic Schiff bases are potential candidates for optically driven molecular switches.

7.
Sci Rep ; 14(1): 22498, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39341861

RESUMO

In this work, we demonstrate that palladium-immobilized triazine dendrimer on magnetic nanoparticles in proper solvents, provides an impressive, atom-economical and compelling approach for the selective synthesis of 2,3-diphenylindole or pentaphenylpyrrole derivatives via annulation of diphenylacetylene with diverse anilines. Both the annulation methods were taken place under copper- and phosphine-free conditions with high yields at air atmosphere. Likewise, bis-indoles were obtained with excellent yields under optimized reaction conditions. Besides, the catalyst was isolated and reused for seven cycles without decrease potential of catalytic activity. Two mechanistic pathways were proposed and geometry optimizations, electronic properties as well as vibrational characterizations of all structures were performed with density functional theory (DFT). Also, the investigation of atomic basin properties of these molecular systems was carried out utilizing the quantum atoms-in-molecules theory (QTAIM). The results showed that 2,3-diphenylindole and pentaphenyl pyrrole molecular systems can be used as intramolecular acceptor/donor (n-like/p-like) sections.

8.
J Hazard Mater ; 476: 135075, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38986412

RESUMO

A novel imine-linked COF is synthesized by the condensation of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) and 2-hydroxy-5-methoxyisophthalaldehyde (HMIPA) under solvothermal conditions. This COF adsorbs preferentially the neutral dye Neutral Red (NR) over the positively charged dye Methylene Blue (MB) at pH 7, and the negatively charged Methyl Orange (MO) over the positively charged Methylene Blue (MB) at pH 3. The maximum adsorption capacities (qe) obtained within very short times (11-60 min) under optimized conditions were 108, 185 and 429 mg.g-1 for the MB, MO, and NR dyes, respectively. These adsorptions obey the Langmuir isotherm and pseudo-second-order kinetics. The prepared TAPT-HMIPA-COF is used successfully for the removal of the dyes from real water and treated wastewater samples. The adsorption data, BET, FTIR, and zeta potential measurements show that the electrostatic, π-π stacking and hydrogen bond interactions are responsible for the adsorption of organic dyes on the surface of the prepared COF. Due to recyclability, high capacity and efficiency for the adsorption of positive, negative and neutral organic dyes, this COF can be considered promising for simultaneous removal of various dyes from aqueous solutions at adjusted pHs.

9.
Sci Rep ; 14(1): 6466, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499593

RESUMO

Organometal halide perovskite solar cells have reached a high power conversion efficiency of up to 25.8% but suffered from poor long-term stability against environmental factors such as ultraviolet irradiation and humidity of the environment. Herein, two different multifunctional transparent coatings containing AZO and ZnO porous UV light absorbers were employed on the front of the PSCs. This strategy is designed to improve the long-term stability of PSCs against UV irradiation. Moreover, the provided coatings exhibit two additional roles, including self-cleaning and high wear resistance. In this regard, AZO coating showed higher wear resistance compared to the ZnO coating. The photocatalytic self-cleaning properties of these prepared coatings make them stable against environmental pollutants. Furthermore, appropriate mechanical properties such as high hardness and low coefficient of friction that leads to high resistance against wear are other features of these coatings. The devices with AZO/Glass/FTO/meso-TiO2/Perovskite/spiro/Au and ZnO/Glass/FTO/meso-TiO2/Perovskite/spiro/Au configurations maintained 40% and 30% of their initial performance for 100 h during 11 days (9 h per day) against the UV light with the high intensity of 50 mW cm-2 which is due to higher absorption of AZO compared with ZnO in the ultraviolet region. Since AZO has a higher light transmission in the visible region in comparison to ZnO, perovskite cells with AZO protective layers have higher efficiency than perovskite cells with ZnO layers. It is worth noting that the mentioned features make these coatings usable for cover glass in all types of solar cells.

10.
Sci Rep ; 14(1): 1451, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228770

RESUMO

In this research, a new Lewis acid-based deep eutectic solvent (LA-DES) was synthesized using diphenhydramine hydrochloride and CoCl2·6H2O, (2[HDPH]:CoCl42-), and identified by FT-IR and 1HNMR techniques. The physicochemical properties of this LA-DES, such as thermal behavior, thermal stability, and solubility in common solvents were also investigated. The catalytic ability of 2[HDPH]:CoCl42- was ascertained in the efficient synthesis of a novel array of thiadiazolo[2,3-b]quinazolin-6-one scaffolds via a one-pot three-component reaction of dimedone/1,3-cyclohexanedione, aldehydes, and 5-aryl-1,3,4-thiadiazol-2-amines/3-(5-amino-1,3,4-thiadiazol-2-yl)-2H-chromen-2-one under solvent-free conditions. This catalyst was also successfully utilized for the synthesis of mono- and bis-thiadiazolo[2,3-b]quinazolin-6-ones from dialdehydes or bis-1,3,4-thiadiazol-2-amine. The simplicity of enforcement, short reaction time, avoidance of toxic organic solvents, scalability of the synthesis procedure, excellent atom economy, high reaction mass efficiency, and low E-factor are other outstanding advantages of this newly developed method. Furthermore, due to the convenient recovery and reuse of LA-DES, this protocol is economically justified and environmentally friendly.

11.
ACS Appl Bio Mater ; 7(7): 4406-4416, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38866715

RESUMO

In this research, we utilized an efficient approach to synthesize superparamagnetic graphene oxide (SPGO) rapidly in a one-pot method using microwave irradiation of graphene oxide (GO), urea, and Fe(III) ion. Tannic acid (TA) was introduced to the surface of SPGO through a straightforward and eco-friendly process. Methods were devised to furnish GO nanosheets and modify their surfaces with TA in an environmentally friendly manner. Two series of nanosheets, namely, SPGO/TA-COOH and SPGO/TA-IM, were engineered on the surface and used for immobilizing lipase enzyme. Through various analytical tools, the unique biocatalysts SPGO/TA-COOH/L and SPGO/TA-IM/L were confirmed. These biocatalysts exhibited enhanced stability at high temperatures and pH levels compared with free lipase. They also demonstrated prolonged storage stability and reusability over four months and seven cycles, respectively. Furthermore, the catalytic activity of immobilized lipase showed minimal impairment based on kinetic behavior analysis. The kinetic constants of SPGO/TA-IM/L were determined as Vmax = 0.24 mM min-1, Km = 0.224 mM, and kcat = 0.8 s-1. Additionally, the efficiency of biocatalysts for biodiesel production from palmitic acid was studied, focusing on various reaction parameters, such as temperature, alcohol to palmitic acid molar ratio, water content, and lipase quantity. The esterification reaction of palmitic acid with methanol, ethanol, and isopropanol was tested in the presence of SPGO/TA-COOH/L and SPGO/TA-IM/L, and the corresponding esters were obtained with a yield of 30.6-91.6%.


Assuntos
Biocombustíveis , Enzimas Imobilizadas , Grafite , Lipase , Propriedades de Superfície , Grafite/química , Lipase/metabolismo , Lipase/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Teste de Materiais , Taninos/química , Tamanho da Partícula , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/metabolismo , Nanoestruturas/química
12.
J Phys Chem A ; 117(4): 718-25, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23312032

RESUMO

Excited state reaction coordinate and the consequent energy profiles of a new Schiff base, N-salicylidene-2-bromoethylamine, have been investigated at the CC2 level of theory. The electron-driven proton transfer and torsional deformation have been identified as the most important photochemical reaction coordinates. In contrast to the ground state, the excited state potential energy profile shows a barrierless dissociation pattern along the O-H stretching coordinate, which verifies the proton transfer reaction along the O-H coordinate at the S(1) state. The calculations showed that the PT is electron driven and that the S(1) transition has charge transfer character. The keto-type S(1) state attained by barrierless proton transfer is found to be unstable via a torsional motion, which provides fast access to a S(1)-S(0) conical intersection. From the conical intersection, a barrierless reaction path directs the system back to the enol-type minimum of the S(0) potential energy surface, thus closing the photocycle.

13.
RSC Adv ; 13(44): 31213-31223, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37886018

RESUMO

Aminopropyl-1,3,5-triazine-2,4-diphosphonium tetrachloroferrate immobilized on halloysite nanotubes [(APTDP)(FeCl4)2@HNT] was prepared and fully characterized using different techniques such as FT-IR, thermogravimetric analysis (TGA), SEM/EDX, elemental mapping, TEM, ICP-OES, and elemental analysis (EA). This nanocatalyst was found to be highly effective for synthesis of various benzothiazole derivatives in excellent yields under solvent-free conditions. Furthermore, bis- and tris-benzothiazoles were smoothly synthesized from dinitrile and trinitrile in the presence of this catalytic system. High yields and purity, easy work up procedure, high catalytic activity (high TON and TOF) and easy recovery and reusability of the catalyst make this method a useful and important addition to the present methodologies for preparation of these vital heterocyclic compounds.

14.
ACS Omega ; 8(18): 15883-15895, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37179652

RESUMO

The current study deals with the synthesis and characterization of a novel catalyst made from diphenhydramine hydrochloride and CuCl ([HDPH]Cl-CuCl). The prepared catalyst was thoroughly characterized using various techniques, such as 1H NMR, Fourier transform-infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis and derivative thermogravimetry. More importantly, the observed hydrogen bond between the components was proven experimentally. The activity of this catalyst was checked in the preparation of some new derivatives of tetrahydrocinnolin-5(1H)-ones via a multicomponent reaction between dimedone, aromatic aldehydes, and aryl/alkyl hydrazines in ethanol as a green solvent. Also, for the first time, this new homogeneous catalytic system was effectively used for the preparation of unsymmetric tetrahydrocinnolin-5(1H)-one derivatives as well as mono- and bis-tetrahydrocinnolin-5(1H)-ones from two different aryl aldehydes and dialdehydes, respectively. The effectiveness of this catalyst was further confirmed by the preparation of compounds containing both tetrahydrocinnolin-5(1H)-one and benzimidazole moieties from dialdehydes. The one-pot operation, mild conditions, rapid reaction, and high atom economy, along with the recyclability and reusability of the catalyst, are other notable features of this approach.

15.
Sci Rep ; 13(1): 6368, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076530

RESUMO

Inorganic hole-transport materials (HTMs) such as copper indium disulfide (CIS) have been applied in perovskite solar cells (PSCs) to improve the poor stability of the conventional Spiro-based PSCs. However, CIS-PSCs' main drawback is their lower efficiency than Spiro-PSCs. In this work, copolymer-templated TiO2 (CT-TiO2) structures have been used as an electron transfer layer (ETL) to improve the photocurrent density and efficiency of CIS-PSCs. Compared to the conventional random porous TiO2 ETLs, copolymer-templated TiO2 ETLs with a lower refractive index improve the transmittance of input light into the cell and therefore enhance the photovoltaic performance. Interestingly, a large number of surface hydroxyl groups on the CT-TiO2 induce a self-healing effect in perovskite. Thus, they provide superior stability in CIS-PSC. The fabricated CIS-PSC presents a conversion efficiency of 11.08% (Jsc = 23.35 mA/cm2, Voc = 0.995, and FF = 0.477) with a device area of 0.09 cm2 under 100 mW/cm2. Moreover, these unsealed CIS-PSCs retained 100% of their performance after aging tests for 90 days under ambient conditions and even increased from 11.08 to 11.27 over time due to self-healing properties.

16.
RSC Adv ; 13(50): 35639-35647, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38077985

RESUMO

In this study, a lactose fatty acid ester was enzymatically synthesised using immobilized Candida rugosa lipase (CRL). Its anticancer property against K562 leukemia and HeLa cancer cells was carefully investigated. In the first step, a de novo strategy was applied to encapsulate CRL into a microporous zeolite imidazolate framework called ZIF-8. Various characterization techniques including powder X-ray diffraction, Fourier transform infrared spectroscopy, N2 adsorption-desorption, field-emission scanning electron microscopy and thermogravimetric analysis were used to prove the successful encapsulation of CRL molecules during the formation of ZIF-8 crystals with an enzyme loading of 98% of initial CRL. The effect of various factors such as pH and temperature, affecting the enzymatic activity and reusability of the CRL@ZIF-8 composite were assessed against the free enzyme. Additionally, enzyme catalysis parameters, such as Km and Vmax, were also assessed. The obtained biocatalyst showed excellent activity in a wide pH range of 2-9 and a temperature range of 30-60 °C. According to the experimental results, the CRL@ZIF-8 composite maintained about 63% of its initial activity after 6 cycles of use. In the next step, the synthesized catalyst was applied for the synthesis of lactose caprate via enzymatic esterification of lactose with capric acid. Further experiments were performed to obtain the cytotoxicity profile of the new derivative. The growth inhibitory effect of the produced lactose caprate on K562 leukemia and HeLa cancer cells determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay showed its potential anticancer effects against both cell lines (IC50, 49.6 and 57.2 µg mL-1). Our results indicate that lactose caprate might be a promising candidate for further studies on K562 leukemia and HeLa cancer cells owing to its possible therapeutic usefulness.

17.
J Colloid Interface Sci ; 648: 78-89, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295372

RESUMO

Two novel MOF- ethyl cellulose (EC)- based nanocomposites have been designed and synthesized in water by electrospinning and applied for adsorption of congo red (CR) in water. Nano- Zeolitic Imidazolate Framework-67 (ZIF-67), and Materials of Institute Lavoisier (MIL-88A) were synthesized in aqueous solutions by a green method. To enhance the dye adsorption capacity and stability of MOFs, they have been incorporated into EC nanofiber to prepare composite adsorbents. The performance of both composites in the absorption of CR, a common pollutant in some industrial wastewaters, has then been investigated. Various parameters including initial dye concentration, the dosage of the adsorbent, pH, temperature and contact time were optimized. The results indicated 99.8 and 90.9% adsorption of CR by EC/ZIF-67 and EC/MIL-88A, respectively at pH = 7 and temperature at 25 °C after 50 min. Furthermore, the synthesized composites were separated conveniently and successfully reused five times without significant loss of their adsorption activity. For both composites, the adsorption behavior can be explained by pseudo-second-order kinetics, Intraparticular diffiusion and Elovich models demonstrated that the experimental data well matched to the pseudo-second-order kinetics. Intraparticular diffiusion model showed that the adsorption of CR on EC/ZIF-67 and EC/MIL-88a took place in one and two steps, respectively. Freundlich isotherm models and thermodynamic analysis indicated exothermic and spontaneous adsorption.

18.
ACS Omega ; 8(20): 17809-17818, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37251154

RESUMO

There is a growing concern that the increasing concentration of CO2 in the atmosphere contributes to a potential negative impact on global climate change. To deal with this problem, developing a set of innovative, practical technologies is essential. In the present study, maximizing the CO2 utilization and precipitation as CaCO3 was evaluated. In this manner, bovine carbonic anhydrase (BCA) was embedded into the microporous zeolite imidazolate framework, ZIF-8, via physical absorption and encapsulation. Running as crystal seeds, these nanocomposites (enzyme-embedded MOFs) were in situ grown on the cross-linked electrospun polyvinyl alcohol (CPVA). The prepared composites displayed much higher stability against denaturants, high temperatures, and acidic media than free BCA, and BCA immobilized into or on ZIF-8. During 37 days of storage period study, BCA@ZIF-8/CPVA and BCA/ZIF-8/CPVA maintained more than 99 and 75% of their initial activity, respectively. The composition of BCA@ZIF-8 and BCA/ZIF-8 with CPVA improved stability for consecutive usage in recovery reactions, recycling easiness, and greater control over the catalytic process. The amounts of calcium carbonate obtained by one mg each of fresh BCA@ZIF-8/CPVA and BCA/ZIF-8/CPVA were 55.45 and 49.15 mg, respectively. The precipitated calcium carbonate by BCA@ZIF-8/CPVA reached 64.8% of the initial run, while this amount was 43.6% for BCA/ZIF-8/CPVA after eight cycles. These results indicated that the BCA@ZIF-8/CPVA and BCA/ZIF-8/CPVA fibers could be efficiently applied to CO2 sequestration.

19.
Mol Divers ; 16(3): 591-600, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22926535

RESUMO

A variety of pyrazolo[3,4-d]pyrimidine-6(7H)-thione derivatives were easily synthesized with a novel, simple, efficient, and regioselective method via three-component condensation reaction of 5-methyl-1H-pyrazol-3-amine, arylisothiocyanates, and aldehydes in the presence of catalytic amount of p-toluenesulfonic acid (p-TSA) in 1-butyl-3-methylimidazolium bromide ionic liquid with excellent yields and short reaction times.


Assuntos
Pirazóis/química , Tionas/química , Tionas/síntese química , Catálise , Técnicas de Química Sintética , Líquidos Iônicos/química , Estereoisomerismo , Especificidade por Substrato , Tolueno/análogos & derivados , Tolueno/química
20.
Mol Divers ; 16(4): 727-35, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23090419

RESUMO

An expeditious, straightforward and efficient synthesis of diversely naphtho[1,2-e][1,3]oxazines via one-pot condensation reaction of ß- naphthol, 3-amino-5-methylisoxazole and arylaldehydes catalyzed by bismuth(III) trifluoromethanesulfonate is described. The reaction preferentially afforded 1,3-trans oxazines.


Assuntos
Bismuto/química , Isoxazóis/química , Naftalenos/química , Oxazinas/síntese química , Absorção , Catálise , Estrutura Molecular , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA