Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(29): 6004-6015, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-38993172

RESUMO

Glycosyltransferases are nature's key biocatalysts for the formation of glycosidic bonds. Discovery and characterization of new synthetically useful glycosyltransferases are critical for the development of efficient enzymatic and chemoenzymatic strategies for producing complex carbohydrates and glycoconjugates. Herein we report the identification of Pasteurella multocida PmNatB as a bifunctional single-catalytic-domain glycosyltransferase with both ß1-3-galactosyltransferase and ß1-3-N-acetylgalactosaminyltransferase activities. It is a novel glycosyltransferase for constructing structurally diverse GalNAcß3Galα/ßOR and Galß3GalNAcα/ßOR disaccharides in one-pot multienzyme systems with in situ generation of UDP-sugars.


Assuntos
Dissacarídeos , N-Acetilgalactosaminiltransferases , Pasteurella multocida , Pasteurella multocida/enzimologia , Dissacarídeos/química , Dissacarídeos/síntese química , Dissacarídeos/biossíntese , N-Acetilgalactosaminiltransferases/metabolismo , N-Acetilgalactosaminiltransferases/química , Galactosiltransferases/metabolismo
2.
Angew Chem Int Ed Engl ; 63(29): e202403133, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38713874

RESUMO

Sialosides containing C8-modified sialic acids are challenging synthetic targets but potentially useful probes for diagnostic substrate profiling of sialidases and elucidating the binding specificity of sialic acid-interacting proteins. Here, we demonstrate efficient chemoenzymatic methods for synthesizing para-nitrophenol-tagged α2-3- and α2-6-linked sialyl galactosides containing C8-acetamido, C8-azido, or C8-amino derivatized N-acetylneuraminic acid (Neu5Ac). High-throughput substrate specificity studies showed that the C8-modification of sialic acid significantly changes its recognition by sialidases from humans, various bacteria, and different influenza A and B viruses. Sialosides carrying Neu5Ac with a C8-azido modification were generally well tolerated by all the sialidases we tested, whereas sialosides containing C8-acetamido-modified Neu5Ac were only cleaved by selective bacterial sialidases. In contrast, sialosides with C8-amino-modified Neu5Ac were cleaved by a combination of selective bacterial and influenza A virus sialidases. These results indicate that sialosides terminated with a C8-amino or C8-acetamido-modified sialic acid can be used with other sialosides for diagnostic profiling of disease-causing sialidase-producing pathogens.


Assuntos
Neuraminidase , Ácidos Siálicos , Neuraminidase/metabolismo , Especificidade por Substrato , Humanos , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Bactérias/enzimologia , Orthomyxoviridae/enzimologia , Vírus da Influenza A/enzimologia
3.
Angew Chem Int Ed Engl ; 62(6): e202214167, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458817

RESUMO

The synthesis of N-glycosides from stable glycosyl donors in a catalytic fashion is still challenging, though they exist ubiquitously in DNA, RNA, glycoproteins, and other biological molecules. Herein, silver-assisted gold-catalyzed activation of alkynyl glycosyl carbonate donors is shown to be a versatile approach for the synthesis of purine and pyrimidine nucleosides, asparagine glycosides and quinolin-2-one N-glycosides. Thus synthesized nucleosides were subjected to the oxidation-reduction sequence for the conversion of Ribf- into Araf- nucleosides, giving access to nucleosides that are otherwise difficult to synthesize. Furthermore, the protocol is demonstrated to be suitable for the synthesis of 2'-modified nucleosides in a facile manner. Direct attachment of an asparagine-containing dipeptide to the glucopyranose and subsequent extrapolation to afford the dipeptide disaccharide unit of chloroviruses is yet another facet of this endeavor.


Assuntos
Glicosídeos , Nucleosídeos , Glicosídeos/química , Nucleosídeos/química , Prata , Ouro/química , Asparagina , Glicosilação , Catálise
4.
Org Biomol Chem ; 19(6): 1315-1328, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33459320

RESUMO

Chemical synthesis of complex oligosaccharides, especially those possessing hyper-branched structures with one or multiple 1,2-cis glycosidic bonds, is a challenging task. Complementary reactivity of glycosyl donors and acceptors and proper tuning of the solvent/temperature/activator coupled with compromised glycosylation yields for sterically congested glycosyl acceptors are among several factors that make such syntheses daunting. Herein, we report the synthesis of a semi-conserved hyper-branched core tetrasaccharide motif from chloroviruses which are associated with reduced cognitive function in humans as well as in mouse models. The target tetrasaccharide contains four different sugar residues in which l-fucose is connected to d-xylose and l-rhamnose via a 1,2-trans glycosidic bond, whereas with the d-galactose residue is connected through a 1,2-cis glycosidic bond. A thorough and comprehensive study of various accountable factors enabled us to install a 1,2-cis galactopyranosidic linkage in a stereoselective fashion under [Au]/[Ag]-catalyzed glycosidation conditions en route to the target tetrasaccharide motif in 14 steps.


Assuntos
Oligossacarídeos/síntese química , Phycodnaviridae/química , Sequência de Carboidratos , Glicosilação , Estereoisomerismo
5.
Molecules ; 26(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684775

RESUMO

Carbohydrate-protein conjugates have diverse applications. They have been used clinically as vaccines against bacterial infection and have been developed for high-throughput assays to elucidate the ligand specificities of glycan-binding proteins (GBPs) and antibodies. Here, we report an effective process that combines highly efficient chemoenzymatic synthesis of carbohydrates, production of carbohydrate-bovine serum albumin (glycan-BSA) conjugates using a squarate linker, and convenient immobilization of the resulting neoglycoproteins on carboxylate-coated fluorescent magnetic beads for the development of a suspension multiplex array platform. A glycan-BSA-bead array containing BSA and 50 glycan-BSA conjugates with tuned glycan valency was generated. The binding profiles of six plant lectins with binding preference towards Gal and/or GalNAc, as well as human galectin-3 and galectin-8, were readily obtained. Our results provide useful information to understand the multivalent glycan-binding properties of human galectins. The neoglycoprotein-immobilized fluorescent magnetic bead suspension multiplex array is a robust and flexible platform for rapid analysis of glycan and GBP interactions and will find broad applications.


Assuntos
Galectinas/metabolismo , Análise Serial de Proteínas/métodos , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Configuração de Carboidratos , Sequência de Carboidratos , Corantes Fluorescentes , Galectinas/química , Produtos Finais de Glicação Avançada , Glicoproteínas , Humanos , Proteínas Imobilizadas , Fenômenos Magnéticos , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Polissacarídeos/química , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Albumina Sérica , Soroalbumina Bovina , Albumina Sérica Glicada
6.
J Org Chem ; 84(11): 6604-6611, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31046280

RESUMO

Chemical syntheses of oligosaccharides and glycosides call utilization of many protecting groups that can be installed or deprotected without affecting other functional groups present. Benzyl ethers are routinely used in the synthesis of glycans as they can be subjected to hydrogenolysis under neutral conditions. However, installation of benzyl ethers is often carried out under strong basic conditions using benzyl halides. Many a times, strongly basic conditions will be detrimental for some of the other sensitive functionalities (e.g., esters). Later introduced reagents such as benzyl trichloroacetimidate and BnOTf are not shelf-stable, and hence, a new method is highly desirable. Taking a cue from the [Au]/[Ag]-catalyzed glycosidations, we have identified a method that enables protection of hydroxyl groups as benzyl, p-methoxybenzyl, or naphthylenemethyl ethers using easily accessible and stable carbonate reagent. A number of saccharide-derived alcohols were subjected to the benzylation successfully using a catalytic amount of gold phosphite and silver triflate. Furthermore, the protocol is suitable for even protecting menthol, cholesterol, serine, disaccharide OH, and furanosyl-derived alcohol easily. The often-utilized olefins and benzoates, as well as benzylidene-, silyl-, Troc-, and Fmoc-protecting groups do not get affected during the newly identified protocol. Regioselective protection and one-pot installation of benzyl and p-methoxybenzyl ethers are demonstrated.

7.
J Org Chem ; 82(21): 11494-11504, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28985062

RESUMO

Hydroxybenzotriazole is routinely used in peptide chemistry for reducing racemization due to the increased reactivity. In this article, very stable hydroxybenzotriazolyl glucosides were identified to undergo glycosidation. The reaction was hypothesized to go through the remote activation by the Tf2O at the N3-site of HOBt followed by the extrusion of the oxocarbenium ion that was attacked by the glycosyl acceptor. Further, equilibration of the zwitterionic benzotriazolyl species makes the leaving group noncompetitive and generates the nucleofuge that has been reconverted to the glycosyl donor. The reaction is mild, high yielding, fast and suitable for donors containing both C2-ethers and C2-esters as well. The regenerative-donor glycosidation strategy is promising as it enables us to regenerate the glycosyl donor for further utilization. The utility of the methodology for the oligosaccharide synthesis was demonstrated by the successful synthesis of the branched pentamannan core of the HIV1-gp120 complex.


Assuntos
Glicosídeos/química , Oligossacarídeos/síntese química , Triazóis/química , Glicosilação , Estrutura Molecular , Oligossacarídeos/química
8.
Angew Chem Int Ed Engl ; 55(27): 7786-91, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-26879797

RESUMO

Oligosaccharide synthesis is still a challenging task despite the advent of modern glycosidation techniques. Herein, alkynyl glycosyl carbonates are shown to be stable glycosyl donors that can be activated catalytically by gold and silver salts at 25 °C in just 15 min to produce glycosides in excellent yields. Benzoyl glycosyl carbonate donors are solid compounds with a long shelf life. This operationally simple protocol was found to be highly efficient for the synthesis of nucleosides, amino acids, and phenolic and azido glycoconjugates. Repeated use of the carbonate glycosidation method enabled the highly convergent synthesis of tridecaarabinomannan in a rapid manner.


Assuntos
Carbonatos/química , Parede Celular/química , Glicosídeos/síntese química , Mycobacterium tuberculosis/química , Oligossacarídeos/síntese química , Alcinos/síntese química , Alcinos/química , Carbonatos/síntese química , Catálise , Técnicas de Química Sintética , Glicosídeos/química , Glicosilação , Ouro/química , Oligossacarídeos/química
9.
J Org Chem ; 79(16): 7358-71, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25020110

RESUMO

Stereoselective synthesis of furanosides is still a daunting task, unlike the pyranosides, for which several methods exist. Herein, a unified stereoselective strategy for the synthesis of 1,2-trans and 1,2-cis furanosides is revealed for seven out of eight possible isomers of pentoses. The identified protocol gives access to diastereoselective synthesis of α- and ß-araf, ribf, lyxf, and α-xylf furanosides. 1,2-trans glycosides were synthesized by the use of propargyl 1,2-orthoesters under gold-catalyzed glycosidation conditions, and subsequently, they are converted into 1,2-cis glycosides through oxidation-reduction as the key functional group transformation. All the reactions are found to be fully diastereoselective, mild, and high yielding.


Assuntos
Glicosídeos/síntese química , Ouro/química , Pentoses/química , Pentoses/síntese química , Catálise , Glicosídeos/química , Oxirredução , Estereoisomerismo
10.
Chem Commun (Camb) ; 56(55): 7625-7628, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32515769

RESUMO

Cationic Au(i) complexes (2, 5 and 8) supported by N-heterocyclic carbene, silylene and germylene ligands were prepared and their potential as catalysts in glycosidation chemistry has been evaluated. Insights into the mechanism are provided using DFT studies. Practical application of them as catalysts was achieved by the synthesis of the branched pentamannan core of the HIV-gp120 envelope under mild conditions.

11.
Nat Commun ; 8: 14019, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120821

RESUMO

Emergence of multidrug-resistant and extreme-drug-resistant strains of Mycobacterium tuberculosis (MTb) can cause serious socioeconomic burdens. Arabinogalactan present on the cellular envelope of MTb is unique and is required for its survival; access to arabinogalactan is essential for understanding the biosynthetic machinery that assembles it. Isolation from Nature is a herculean task and, as a result, chemical synthesis is the most sought after technique. Here we report a convergent synthesis of branched heneicosafuranosyl arabinogalactan (HAG) of MTb. Key furanosylations are performed using [Au]/[Ag] catalysts. The synthesis of HAG is achieved by the repetitive use of three reactions namely 1,2-trans furanoside synthesis by propargyl 1,2-orthoester donors, unmasking of silyl ether, and conversion of n-pentenyl furanosides into 1,2-orthoesters. Synthesis of HAG is achieved in 47 steps (with an overall yield of 0.09%) of which 21 are installation of furanosidic linkages in a stereoselective manner.


Assuntos
Parede Celular/química , Galactanos/síntese química , Ouro/química , Mycobacterium tuberculosis/química , Prata/química , Catálise , Estereoisomerismo
12.
Org Lett ; 15(10): 2466-9, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23659307

RESUMO

Propargyl 1,2-orthoesters of arabinose are exploited for the synthesis of 1,2-trans furanosides; easily accessible 1,2-trans ribofuranosides are converted to challenging 1,2-cis-arabinofuranosides by oxidoreduction. Utility of these protocols was demonstrated by the successful synthesis of major structural motifs present in the cell surface of Mycobacterium tuberculosis. Key furanosylations were carried out under gold-catalyzed glycosidation conditions.


Assuntos
Arabinose/análogos & derivados , Arabinose/síntese química , Parede Celular/química , Glicosídeos/química , Glicosídeos/síntese química , Mycobacterium tuberculosis/química , Arabinose/química , Ouro , Estrutura Molecular , Mycobacterium tuberculosis/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA