Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Chemistry ; 28(51): e202200995, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35697660

RESUMO

Tuberculosis (TB) is a leading source of infectious disease mortality globally. Antibiotic-resistant strains comprise an estimated 10 % of new TB cases and present an urgent need for novel therapeutics. ß-lactam antibiotics have traditionally been ineffective against M. tuberculosis (Mtb), the causative agent of TB, due to the organism's inherent expression of ß-lactamases that destroy the electrophilic ß-lactam warhead. We have developed novel ß-lactam conjugates, which exploit this inherent ß-lactamase activity to achieve selective release of pyrazinoic acid (POA), the active form of a first-line TB drug. These conjugates are selectively active against M. tuberculosis and related mycobacteria, and activity is retained or even potentiated in multiple resistant strains and models. Preliminary mechanistic investigations suggest that both the POA "warhead" as well as the ß-lactam "promoiety" contribute to the observed activity, demonstrating a codrug strategy with important implications for future TB therapy.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Pirazinamida/análogos & derivados , Pirazinamida/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , beta-Lactamas/farmacologia
2.
Biochemistry ; 56(35): 4607-4615, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28771339

RESUMO

Post-translational lysine acetylation of histone tails affects both chromatin accessibility and recruitment of multifunctional bromodomain-containing proteins for modulating transcription. The bromodomain- and PHD finger-containing transcription factor (BPTF) regulates transcription but has also been implicated in high gene expression levels in a variety of cancers. In this report, the histone variant H2A.Z, which replaces H2A in chromatin, is evaluated for its affinity for BPTF with a specific recognition pattern of acetylated lysine residues of the N-terminal tail region. Although BPTF immunoprecipitates H2A.Z-containing nucleosomes, a direct interaction with its bromodomain has not been reported. Using protein-observed fluorine nuclear magnetic resonance (PrOF NMR) spectroscopy, we identified a diacetylation of H2A.Z on lysine residues 4 and 11, with the highest affinity for BPTF with a Kd of 780 µM. A combination of subsequent 1H NMR Carr-Purcell-Meiboom-Gill experiments and photo-cross-linking further confirmed the specificity of the diacetylation pattern at lysines 4 and 11. Because of an adjacent PHD domain, this transient interaction may contribute to a higher-affinity bivalent interaction. Further evaluation of specificity toward a set of bromodomains, including two BET bromodomains (Brd4 and BrdT) and two Plasmodium falciparum bromodomains, resulted in one midmicromolar affinity binder, PfGCN5 (Kd = 650 µM). With these biochemical experiments, we have identified a direct interaction of histone H2A.Z with bromodomains with a specific acetylation pattern that further supports the role of H2A.Z in epigenetic regulation.


Assuntos
Histonas/metabolismo , Acetilação , Sequência de Aminoácidos , Sítios de Ligação , Escherichia coli , Regulação da Expressão Gênica/fisiologia , Histonas/genética , Ligantes , Modelos Moleculares , Plasmodium falciparum , Conformação Proteica , Domínios Proteicos
3.
J Biomol Struct Dyn ; : 1-13, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345048

RESUMO

This study was conducted to test the efficacy of 5-fluorouracil (5-FU) as an anticancer drug against the human pyruvate kinase isozyme M2 (PKM2) using spectroscopic, molecular docking and molecular dynamic simulation studies. PKM2 fluorescence quenching studies in the presence of 5-FU performed at three different temperatures indicates dynamic quenching processes with single-set of binding (n ≈ 1) profile. The biomolecular quenching constants (kq) and the effective binding constants (Kb) obtained are shown to increase with temperature. The calculated enthalpy (ΔH) and entropy changes (ΔS) are estimated to be -118.06 kJ/mol and 146.14 kJ/mol/K respectively, which suggest the possible mode of interaction as electrostatic and hydrogen bonding. Further, these values were used to estimate the free energy changes (ΔG) and that increases with temperature. The negative ΔG values clearly indicates spontaneous binding process that stabilizes the complex formed between 5-FU and PKM2. Far-UV CD spectra of PKM2 in the presence of 5-FU shows decrease in α-helix contents which point towards the destabilization of secondary structure that weakens the biological activity of PKM2. The intrinsic fluorescence study and circular dichroism (CD) spectra showed minor conformational changes of PKM2 in the presence of 5-FU. Additionally, the results obtained from molecular docking and all-atom molecular dynamic simulation study supports the insight of the spectroscopic binding studies, and strengthens the dynamic stability of the complex between 5-FU and PKM2 through H-bonding. This study establishes a paradigm of 5-FU-PKM2 complexation and the efficacy of 5-FU that compromises the biological activity of the targeted PKM2.Communicated by Ramaswamy H. Sarma.

4.
ACS Infect Dis ; 5(4): 598-617, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30652474

RESUMO

The synthesis, absolute stereochemical configuration, complete biological characterization, mechanism of action and resistance, and pharmacokinetic properties of ( S)-(-)-acidomycin are described. Acidomycin possesses promising antitubercular activity against a series of contemporary drug susceptible and drug-resistant M. tuberculosis strains (minimum inhibitory concentrations (MICs) = 0.096-6.2 µM) but is inactive against nontuberculosis mycobacteria and Gram-positive and Gram-negative pathogens (MICs > 1000 µM). Complementation studies with biotin biosynthetic pathway intermediates and subsequent biochemical studies confirmed acidomycin inhibits biotin synthesis with a Ki of approximately 1 µM through the competitive inhibition of biotin synthase (BioB) and also stimulates unproductive cleavage of S-adenosyl-l-methionine (SAM) to generate the toxic metabolite 5'-deoxyadenosine. Cell studies demonstrate acidomycin selectively accumulates in M. tuberculosis providing a mechanistic basis for the observed antibacterial activity. The development of spontaneous resistance by M. tuberculosis to acidomycin was difficult, and only low-level resistance to acidomycin was observed by overexpression of BioB. Collectively, the results provide a foundation to advance acidomycin and highlight BioB as a promising target.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Sulfurtransferases/antagonistas & inibidores , Tiazolidinas/farmacologia , Tuberculose/microbiologia , Animais , Antituberculosos/síntese química , Antituberculosos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Produtos Biológicos/síntese química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Biotina/biossíntese , Caproatos/síntese química , Caproatos/química , Caproatos/farmacologia , Farmacorresistência Bacteriana , Humanos , Cinética , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Sulfurtransferases/química , Sulfurtransferases/genética , Sulfurtransferases/metabolismo , Tiazolidinas/síntese química , Tiazolidinas/química , Tuberculose/tratamento farmacológico
5.
J Med Chem ; 61(20): 9316-9334, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30253095

RESUMO

As regulators of transcription, epigenetic proteins that interpret post-translational modifications to N-terminal histone tails are essential for maintaining cellular homeostasis. When dysregulated, "reader" proteins become drivers of disease. In the case of bromodomains, which recognize N-ε-acetylated lysine, selective inhibition of individual bromodomain-and-extra-terminal (BET)-family bromodomains has proven challenging. We describe the >55-fold N-terminal-BET bromodomain selectivity of 1,4,5-trisubstituted-imidazole dual kinase-bromodomain inhibitors. Selectivity for the BRD4 N-terminal bromodomain (BRD4(1)) over its second bromodomain (BRD4(2)) arises from the displacement of ordered waters and the conformational flexibility of lysine-141 in BRD4(1). Cellular efficacy was demonstrated via reduction of c-Myc expression, inhibition of NF-κB signaling, and suppression of IL-8 production through potential synergistic inhibition of BRD4(1) and p38α. These dual inhibitors provide a new scaffold for domain-selective inhibition of BRD4, the aberrant function of which plays a key role in cancer and inflammatory signaling.


Assuntos
Imidazóis/química , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Células A549 , Humanos , Domínios Proteicos , Água/química , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/química
6.
Nat Protoc ; 11(8): 1414-27, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27414758

RESUMO

NMR spectroscopy can be used to quantify the binding affinity between proteins and low-complexity molecules, termed 'fragments'; this versatile screening approach allows researchers to assess the druggability of new protein targets. Protein-observed (19)F-NMR (PrOF NMR) using (19)F-labeled amino acids generates relatively simple spectra that are able to provide dynamic structural information toward understanding protein folding and function. Changes in these spectra upon the addition of fragment molecules can be observed and quantified. This protocol describes the sequence-selective labeling of three proteins (the first bromodomains of Brd4 and BrdT, and the KIX domain of the CREB-binding protein) using commercially available fluorinated aromatic amino acids and fluorinated precursors as example applications of the method developed by our research group. Fragment-screening approaches are discussed, as well as Kd determination, ligand-efficiency calculations and druggability assessment, i.e., the ability to target these proteins using small-molecule ligands. Experiment times on the order of a few minutes and the simplicity of the NMR spectra obtained make this approach well-suited to the investigation of small- to medium-sized proteins, as well as the screening of multiple proteins in the same experiment.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Preparações Farmacêuticas/metabolismo , Proteínas/química , Halogenação , Ligantes , Modelos Moleculares , Conformação Proteica , Proteínas/metabolismo
7.
ACS Chem Biol ; 10(10): 2246-56, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26158404

RESUMO

Bromodomain-containing protein dysregulation is linked to cancer, diabetes, and inflammation. Selective inhibition of bromodomain function is a newly proposed therapeutic strategy. We describe a (19)F NMR dual screening method for small molecule discovery using fluorinated tryptophan resonances on two bromodomain-containing proteins. The chemical shift dispersion of (19)F resonances within fluorine-labeled proteins enables the simultaneous analysis of two fluorinated bromodomains by NMR. A library of 229 small molecules was screened against the first bromodomain of Brd4 and the BPTF bromodomain. We report the first small molecule selective for BPTF over Brd4, termed AU1. The Kd = 2.8 µM for AU1, which is active in a cell-based reporter assay. No binding is detected with Brd4. Three new Brd4 inhibitors with submicromolar affinity were also discovered. Brd4 hits were validated in a thermal stability assay and potency determined via fluorescence anisotropy. The speed, ease of interpretation, and low protein concentration needed for protein-observed (19)F NMR experiments in a multiprotein format offers a new method to discover and characterize selective ligands for bromodomain-containing proteins.


Assuntos
Antígenos Nucleares/química , Proteínas do Tecido Nervoso/química , Proteínas Nucleares/química , Fatores de Transcrição/química , Ligação Competitiva , Proteínas de Ciclo Celular , Linhagem Celular , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Flúor/química , Humanos , Concentração Inibidora 50 , Imageamento por Ressonância Magnética , Estrutura Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Temperatura
8.
ACS Chem Biol ; 9(12): 2755-60, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25290579

RESUMO

We describe a (19)F NMR method for detecting bromodomain-ligand interactions using fluorine-labeled aromatic amino acids due to the conservation of aromatic residues in the bromodomain binding site. We test the sensitivity, accuracy, and speed of this method with small molecule ligands (+)-JQ1, BI2536, Dinaciclib, TG101348, and acetaminophen using three bromodomains Brd4, BrdT, and BPTF. Simplified (19)F NMR spectra allowed for simultaneous testing of multiple bromodomains to assess selectivity and identification of a new BPTF ligand. Fluorine labeling only modestly affected the Brd4 structure and function assessed by isothermal titration calorimetry, circular dichroism, and X-ray crystallography. The speed, ease of interpretation, and low concentration of protein needed for binding experiments affords a new method to discover and characterize both native and new ligands.


Assuntos
Aminoácidos Aromáticos/química , Sondas Moleculares/química , Proteínas de Fusão Oncogênica/química , Acetaminofen/química , Antígenos Nucleares/química , Antígenos Nucleares/genética , Azepinas/química , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/química , Proteínas de Ciclo Celular , Cristalografia por Raios X , Óxidos N-Cíclicos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Halogenação , Humanos , Indolizinas , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Simulação de Acoplamento Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Ligação Proteica , Pteridinas/química , Compostos de Piridínio/química , Pirrolidinas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Coloração e Rotulagem/métodos , Sulfonamidas/química , Fatores de Transcrição/química , Fatores de Transcrição/genética , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA