RESUMO
Atomically thin, few-layered membranes of oxides show unique physical and chemical properties compared to their bulk forms. Manganese oxide (Mn3O4) membranes are exfoliated from the naturally occurring mineral Hausmannite and used to make flexible, high-performance nanogenerators (NGs). An enhanced power density in the membrane NG is observed with the best-performing device showing a power density of 7.99 mW m-2 compared to 1.04 µW m-2 in bulk Mn3O4. A sensitivity of 108 mV kPa-1 for applied forces <10 N in the membrane NG is observed. The improved performance of these NGs is attributed to enhanced flexoelectric response in a few layers of Mn3O4. Using first-principles calculations, the flexoelectric coefficients of monolayer and bilayer Mn3O4 are found to be 50-100 times larger than other 2D transition metal dichalcogenides (TMDCs). Using a model based on classical beam theory, an increasing activation of the bending mode with decreasing thickness of the oxide membranes is observed, which in turn leads to a large flexoelectric response. As a proof-of-concept, flexible NGs using exfoliated Mn3O4 membranes are made and used in self-powered paper-based devices. This research paves the way for the exploration of few-layered membranes of other centrosymmetric oxides for application as energy harvesters.
RESUMO
Oxy-combustion systems result in enriched CO2 in exhaust gases; however, the utilization of the concentrated CO2 stream from oxy-combustion is limited by remnant O2. CH4 oxidation using Pd catalysts has been found to have high O2-removal efficiency. Here, the effect of excess CO2 in the feed stream on O2 removal with CH4 oxidation is investigated by combining experimental and theoretical approaches. Experimental results reveal complete CH4 oxidation without any side-products, and a monotonic increase in the rate of CO2 generation with an increase in CO2 concentration in the feed stream. Density-functional theory calculations show that high surface coverage of CO2 on Pd leads to a reduction in the activation energy for the initial dissociation of CH4 into CH3 and H, and also the subsequent oxidation reactions. A CO2-rich environment in oxy-combustion systems is therefore beneficial for the reduction of oxygen in exhaust gases.
RESUMO
Materials with metastable phases can exhibit vastly different properties from their thermodynamically favored counterparts. Methods to synthesize metastable phases without the need for high-temperature or high-pressure conditions would facilitate their widespread use. We report on the electrochemical growth of microcrystals of bismuth selenide, Bi2Se3, in the metastable orthorhombic phase at room temperature in aqueous solution. Rather than direct epitaxy with the growth substrate, the spontaneous formation of a seed layer containing nanocrystals of cubic BiSe enforces the metastable phase. We first used single-crystal silicon substrates with a range of resistivities and different orientations to identify the conditions needed to produce the metastable phase. When the applied potential during electrochemical growth is positive of the reduction potential of Bi3+, an initial, Bi-rich seed layer forms. Electron microscopy imaging and diffraction reveal that the seed layer consists of nanocrystals of cubic BiSe embedded within an amorphous matrix of Bi and Se. Using density functional theory calculations, we show that epitaxial matching between cubic BiSe and orthorhombic Bi2Se3 can help stabilize the metastable orthorhombic phase over the thermodynamically stable rhombohedral phase. The spontaneous formation of the seed layer enables us to grow orthorhombic Bi2Se3 on a variety of substrates including single-crystal silicon with different orientations, polycrystalline fluorine-doped tin oxide, and polycrystalline gold. The ability to stabilize the metastable phase through room-temperature electrodeposition in aqueous solution without requiring a single-crystal substrate broadens the range of applications for this semiconductor in optoelectronic and electrochemical devices.
RESUMO
Interfacial behavior of quantum materials leads to emergent phenomena such as quantum phase transitions and metastable functional phases. Probes for in situ and real time surface-sensitive characterization are critical for control during epitaxial synthesis of heterostructures. Termination switching in complex oxides has been studied using a variety of probes, often ex situ; however, direct in situ observation of this phenomena during growth is rare. To address this, we establish in situ and real time Auger electron spectroscopy for pulsed laser deposition with reflection high energy electron diffraction, providing structural and compositional surface information during film deposition. Using this capability, we show the direct observation and control of surface termination in heterostructures of SrTiO3 and SrRuO3. Density-functional-theory calculations capture the energetics and stability of the observed structures, elucidating their electronic behavior. This work demonstrates an exciting approach to monitor and control the composition of materials at the atomic scale for control over emergent phenomena and potential applications.
RESUMO
2D materials, such as transition metal dichalcogenides (TMDs), graphene, and boron nitride, are seen as promising materials for future high power/high frequency electronics. However, the large difference in the thermal expansion coefficient (TEC) between many of these 2D materials could impose a serious challenge for the design of monolayer-material-based nanodevices. To address this challenge, alloy engineering of TMDs is used to tailor their TECs. Here, in situ heating experiments in a scanning transmission electron microscope are combined with electron energy-loss spectroscopy and first-principles modeling of monolayer Mo1- x Wx S2 with different alloying concentrations to determine the TEC. Significant changes in the TEC are seen as a function of chemical composition in Mo1- x Wx S2 , with the smallest TEC being reported for a configuration with the highest entropy. This study provides key insights into understanding the nanoscale phenomena that control TEC values of 2D materials.
RESUMO
Multiferroic materials with simultaneous magnetic and ferroelectric ordering that persist above room temperature are rare. Using first-principles density functional theory calculations, we demonstrate fluorination of oxygen-deficient AA'Fe2O5 perovskites, where A and A' are cations with +3 and +2 oxidation states, respectively, and have a layered ordering, as an effective strategy to obtain room-temperature multiferroics. We show that by controlling the size of the A and A' cations, it is possible to stabilize a noncentrosymmetric phase arising due to the hybrid improper ferroelectricity mechanism, with polarization as high as 13 µC/cm2. The fluorination also stabilizes Fe in +3 oxidation state, which results in superexchange interactions that are strong enough to sustain magnetic order well above room temperature. We also show the presence of a magnetoelectric coupling wherein the switching mode that reverses the direction of the spontaneous polarization also affects the strength of the magnetic interactions. The results show that low-temperature fluorination of anion-deficient perovskites with layered cation ordering can be an effective approach to design new multiferroics.
RESUMO
The development of interface-based magnetoelectric devices necessitates an understanding of polarization-mediated electronic phenomena and atomistic polarization screening mechanisms. In this work, the LSMO/BFO interface is studied on a single unit-cell level through a combination of direct order parameter mapping by scanning transmission electron microscopy and electron energy-loss spectroscopy. We demonstrate an unexpected ~5% lattice expansion for regions with negative polarization charge, with a concurrent anomalous decrease of the Mn valence and change in oxygen K-edge intensity. We interpret this behaviour as direct evidence for screening by oxygen vacancies. The vacancies are predominantly accumulated at the second atomic layer of BFO, reflecting the difference of ionic conductivity between the components. This vacancy exclusion from the interface leads to the formation of a tail-to-tail domain wall. At the same time, purely electronic screening is realized for positive polarization charge, with insignificant changes in lattice and electronic properties. These results underline the non-trivial role of electrochemical phenomena in determining the functional properties of oxide interfaces. Furthermore, these behaviours suggest that vacancy dynamics and exclusion play major roles in determining interface functionality in oxide multilayers, providing clear implications for novel functionalities in potential electronic devices.
RESUMO
Complex oxides displaying ferroelectric and/or multiferroic behavior are of high fundamental and applied interest. In this work, we show that it is possible to achieve polar order in a superlattice made up of two nonpolar oxides by means of oxygen vacancy ordering. Using scanning transmission electron microscopy imaging, we show the polar displacement of magnetic Fe ions in a superlattice of (LaFeO3)2/(SrFeO3) grown on a SrTiO3 substrate. Using density functional theory calculations, we systematically study the effect of epitaxial strain, octahedral rotations, and surface terminations in the superlattice and find them to have a negligible effect on the antipolar displacements of the Fe ions lying in between SrO and LaO layers of the superlattice (i.e., within La0.5Sr0.5FeO3 unit cells). The introduction of oxygen vacancies, on the other hand, triggers a polar displacement of the Fe ions. We confirm this important result using electron energy loss spectroscopy, which shows partial oxygen vacancy ordering in the region where polar displacements are observed and an absence of vacancy ordering outside of that area.
RESUMO
Diffusion is one of the fundamental processes that govern the structure, processing, and properties of materials and it plays a crucial role in determining device lifetimes. However, direct observations of diffusion processes have been elusive and limited only to the surfaces of materials. Here we use an aberration-corrected electron microscope to locally excite and directly image the diffusion of single Ce and Mn dopants inside bulk wurtzite-type AlN single crystals, identifying correlated vacancy-dopant and interstitial-dopant kick-out mechanisms. Using a 200 kV electron beam to supply energy, we observe a higher frequency of dopant jumps for the larger and heavier Ce atoms than the smaller Mn atoms. These observations confirm density-functional-theory-based predictions of a decrease in diffusion barrier for large substitutional atoms. The results show that combining depth sensitive microscopy with theoretical calculations represents a new methodology to investigate diffusion mechanisms, not restricted to surface phenomena, but within bulk materials.
RESUMO
A low-temperature scanning tunneling microscope was used in conjunction with density functional theory calculations to determine the binding sites and charge states of adsorbed Ga and Mn atoms on GaAs(110). To quantify the adatom charge states (both +1e), the Coulomb interaction with an individual Mn acceptor is measured via tunneling spectroscopy and compared with theoretical predictions. Several methods for positioning these charged adatoms are demonstrated, allowing us to engineer the electrostatic landscape of the surface with atomic precision.
RESUMO
Gallium nitride quantum dots (GaN QDs) are a promising material for optoelectronics, but the synthesis of freestanding GaN QDs remains a challenge. To date, the size-dependent photonic properties of freestanding GaN QDs have not been reported. Here, we examine the photonic properties exhibited by thin films composed of GaN QDs synthesized by nonequilibrium plasma aerotaxy. Each film exhibited two photoluminescence peaks after exposure to ambient air. The first peak was in the ultraviolet spectral region, and the second peak was in the visible region. Both peak positions depended on the QD size. Our findings, supported by transient absorption spectroscopy experiments, suggest that conduction band to valence band recombination was the cause of the ultraviolet photoluminescence and that recombination between the conduction band and an acceptor level was the cause of visible photoluminescence. Furthermore, we show that coating the surface of fresh QDs with Al2O3 suppressed the visible region photoluminescence, corroborating the conclusion that the photoactive defect was caused by oxidation in air.
RESUMO
Cellular purines, particularly adenosine 5'-triphosphate (ATP), fuel many metabolic reactions, but less is known about the direct effects of pyrimidines on cellular metabolism. We found that pyrimidines, but not purines, maintain pyruvate oxidation and the tricarboxylic citric acid (TCA) cycle by regulating pyruvate dehydrogenase (PDH) activity. PDH activity requires sufficient substrates and cofactors, including thiamine pyrophosphate (TPP). Depletion of cellular pyrimidines decreased TPP synthesis, a reaction carried out by TPP kinase 1 (TPK1), which reportedly uses ATP to phosphorylate thiamine (vitamin B1). We found that uridine 5'-triphosphate (UTP) acts as the preferred substrate for TPK1, enabling cellular TPP synthesis, PDH activity, TCA-cycle activity, lipogenesis, and adipocyte differentiation. Thus, UTP is required for vitamin B1 utilization to maintain pyruvate oxidation and lipogenesis.
Assuntos
Ciclo do Ácido Cítrico , Lipogênese , Pirimidinas , Complexo Piruvato Desidrogenase , Piruvatos , Trifosfato de Adenosina/metabolismo , Pirimidinas/metabolismo , Piruvatos/metabolismo , Tiamina/metabolismo , Tiamina Pirofosfato/metabolismo , Uridina Trifosfato/metabolismo , Oxirredução , Proteínas Quinases/metabolismo , Humanos , Células HeLa , Complexo Piruvato Desidrogenase/metabolismoRESUMO
It is shown that structural disorder-in the form of anisotropic, picoscale atomic displacements-modulates the refractive index tensor and results in the giant optical anisotropy observed in BaTiS3, a quasi-1D hexagonal chalcogenide. Single-crystal X-ray diffraction studies reveal the presence of antipolar displacements of Ti atoms within adjacent TiS6 chains along the c-axis, and threefold degenerate Ti displacements in the a-b plane. 47/49Ti solid-state NMR provides additional evidence for those Ti displacements in the form of a three-horned NMR lineshape resulting from a low symmetry local environment around Ti atoms. Scanning transmission electron microscopy is used to directly observe the globally disordered Ti a-b plane displacements and find them to be ordered locally over a few unit cells. First-principles calculations show that the Ti a-b plane displacements selectively reduce the refractive index along the ab-plane, while having minimal impact on the refractive index along the chain direction, thus resulting in a giant enhancement in the optical anisotropy. By showing a strong connection between structural disorder with picoscale displacements and the optical response in BaTiS3, this study opens a pathway for designing optical materials with high refractive index and functionalities such as large optical anisotropy and nonlinearity.
RESUMO
Electrostatic capacitors are foundational components of advanced electronics and high-power electrical systems owing to their ultrafast charging-discharging capability. Ferroelectric materials offer high maximum polarization, but high remnant polarization has hindered their effective deployment in energy storage applications. Previous methodologies have encountered problems because of the deteriorated crystallinity of the ferroelectric materials. We introduce an approach to control the relaxation time using two-dimensional (2D) materials while minimizing energy loss by using 2D/3D/2D heterostructures and preserving the crystallinity of ferroelectric 3D materials. Using this approach, we were able to achieve an energy density of 191.7 joules per cubic centimeter with an efficiency greater than 90%. This precise control over relaxation time holds promise for a wide array of applications and has the potential to accelerate the development of highly efficient energy storage systems.
RESUMO
The insulating, fully ordered, double perovskite Sr2CoOsO6 undergoes two magnetic phase transitions. The Os(VI) ions order antiferromagnetically with a propagation vector k = (1/2, 1/2, 0) below TN1 = 108 K, while the high-spin Co(II) ions order antiferromagnetically with a propagation vector k = (1/2, 0, 1/2) below TN2 = 70 K. Ordering of the Os(VI) spins is accompanied by a structural distortion from tetragonal I4/m symmetry to monoclinic I2/m symmetry, which reduces the frustration of the face centered cubic lattice of Os(VI) ions. Density functional theory calculations show that the long-range Os-O-Co-O-Os and Co-O-Os-O-Co superexchange interactions are considerably stronger than the shorter Os-O-Co interactions. The poor energetic overlap between the 3d orbitals of Co and the 5d orbitals of Os appears to be responsible for this unusual inversion in the strength of short and long-range superexchange interactions.
RESUMO
The use of multi-auxiliary variables helps in increasing the precision of the estimators, especially when the population is rare and hidden clustered. In this article, four ratio-cum-product type estimators have been proposed using two auxiliary variables under adaptive cluster sampling (ACS) design. The expressions of the mean square error (MSE) of the proposed ratio-cum-product type estimators have been derived up to the first order of approximation and presented along with their efficiency conditions with respect to the estimators presented in this article. The efficiency of the proposed estimators over similar existing estimators have been assessed on four different populations two of which are of the daily spread of COVID-19 cases. The proposed estimators performed better than the estimators presented in this article on all four populations indicating their wide applicability and precision.
RESUMO
Electrical modulation of magnetic states in single-phase multiferroic materials, using domain-wall magnetoelectric (ME) coupling, can be enhanced substantially by controlling the population density of the ferroelectric (FE) domain walls during polarization switching. In this work, we investigate the domain-wall ME coupling in multiferroic h-YbFeO3 thin films, in which the FE domain walls induce clamped antiferromagnetic (AFM) domain walls with reduced magnetization magnitude. Simulation according to the phenomenological theory indicates that the domain-wall ME effect is dramatically enhanced when the separation between the FE domain walls shrinks below the characteristic width of the clamped AFM domain walls during the ferroelectric switching. Experimentally, we show that while the magnetization magnitude remains same for both the positive and the negative saturation polarization states, there is evidence of magnetization reduction at the coercive voltages. These results suggest that the domain-wall ME effect is viable for electrical control of magnetization.
RESUMO
Materials with large birefringence (Δn, where n is the refractive index) are sought after for polarization control (e.g., in wave plates, polarizing beam splitters, etc.), nonlinear optics, micromanipulation, and as a platform for unconventional light-matter coupling, such as hyperbolic phonon polaritons. Layered 2D materials can feature some of the largest optical anisotropy; however, their use in most optical systems is limited because their optical axis is out of the plane of the layers and the layers are weakly attached. This work demonstrates that a bulk crystal with subtle periodic modulations in its structure-Sr9/8 TiS3 -is transparent and positive-uniaxial, with extraordinary index ne = 4.5 and ordinary index no = 2.4 in the mid- to far-infrared. The excess Sr, compared to stoichiometric SrTiS3 , results in the formation of TiS6 trigonal-prismatic units that break the chains of face-sharing TiS6 octahedra in SrTiS3 into periodic blocks of five TiS6 octahedral units. The additional electrons introduced by the excess Sr form highly oriented electron clouds, which selectively boost the extraordinary index ne and result in record birefringence (Δn > 2.1 with low loss). The connection between subtle structural modulations and large changes in refractive index suggests new categories of anisotropic materials and also tunable optical materials with large refractive-index modulation.
RESUMO
Wildfires emit large amounts of black carbon and light-absorbing organic carbon, known as brown carbon, into the atmosphere. These particles perturb Earth's radiation budget through absorption of incoming shortwave radiation. It is generally thought that brown carbon loses its absorptivity after emission in the atmosphere due to sunlight-driven photochemical bleaching. Consequently, the atmospheric warming effect exerted by brown carbon remains highly variable and poorly represented in climate models compared with that of the relatively nonreactive black carbon. Given that wildfires are predicted to increase globally in the coming decades, it is increasingly important to quantify these radiative impacts. Here we present measurements of ensemble-scale and particle-scale shortwave absorption in smoke plumes from wildfires in the western United States. We find that a type of dark brown carbon contributes three-quarters of the short visible light absorption and half of the long visible light absorption. This strongly absorbing organic aerosol species is water insoluble, resists daytime photobleaching and increases in absorptivity with night-time atmospheric processing. Our findings suggest that parameterizations of brown carbon in climate models need to be revised to improve the estimation of smoke aerosol radiative forcing and associated warming.