Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(15): 7298-7307, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910961

RESUMO

Thousands of biochemical reactions with characterized activities are "orphan," meaning they cannot be assigned to a specific enzyme, leaving gaps in metabolic pathways. Novel reactions predicted by pathway-generation tools also lack associated sequences, limiting protein engineering applications. Associating orphan and novel reactions with known biochemistry and suggesting enzymes to catalyze them is a daunting problem. We propose the method BridgIT to identify candidate genes and catalyzing proteins for these reactions. This method introduces information about the enzyme binding pocket into reaction-similarity comparisons. BridgIT assesses the similarity of two reactions, one orphan and one well-characterized nonorphan reaction, using their substrate reactive sites, their surrounding structures, and the structures of the generated products to suggest enzymes that catalyze the most-similar nonorphan reactions as candidates for also catalyzing the orphan ones. We performed two large-scale validation studies to test BridgIT predictions against experimental biochemical evidence. For the 234 orphan reactions from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 2011 (a comprehensive enzymatic-reaction database) that became nonorphan in KEGG 2018, BridgIT predicted the exact or a highly related enzyme for 211 of them. Moreover, for 334 of 379 novel reactions in 2014 that were later cataloged in KEGG 2018, BridgIT predicted the exact or highly similar enzymes. BridgIT requires knowledge about only four connecting bonds around the atoms of the reactive sites to correctly annotate proteins for 93% of analyzed enzymatic reactions. Increasing to seven connecting bonds allowed for the accurate identification of a sequence for nearly all known enzymatic reactions.


Assuntos
Bases de Dados de Proteínas , Enzimas , Anotação de Sequência Molecular , Análise de Sequência de Proteína , Sítios de Ligação , Enzimas/química , Enzimas/genética
2.
Metab Eng ; 66: 191-203, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33895366

RESUMO

The advancements in genome editing techniques over the past years have rekindled interest in rational metabolic engineering strategies. While Metabolic Control Analysis (MCA) is a well-established method for quantifying the effects of metabolic engineering interventions on flows in metabolic networks and metabolite concentrations, it does not consider the physiological limitations of the cellular environment and metabolic engineering design constraints. We report here a constraint-based framework, Network Response Analysis (NRA), for rational genetic strain design. NRA is cast as a Mixed-Integer Linear Programming problem that integrates MCA, Thermodynamically-based Flux Analysis (TFA), biologically relevant constraints, as well as genome editing restrictions into a comprehensive platform for identifying metabolic engineering targets. We show that the NRA formulation and its core constraints are equivalent to the ones of Flux Balance Analysis (FBA) and TFA, which allows it to be used for a wide range of optimization criteria and with various physiological constraints. We also show how the parametrization and introduction of biological constraints enhance the NRA formulation compared to the classical MCA approach, and we demonstrate its features and its ability to generate multiple alternative optimal strategies given several user-defined boundaries and objectives. In summary, NRA is a sophisticated alternative to classical MCA for rational metabolic engineering that accommodates the incorporation of physiological data at metabolic flux, metabolite concentration, and enzyme expression levels.


Assuntos
Escherichia coli , Modelos Biológicos , Escherichia coli/genética , Engenharia Metabólica , Análise do Fluxo Metabólico , Redes e Vias Metabólicas/genética
3.
PLoS Comput Biol ; 15(8): e1007242, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31430276

RESUMO

A persistent obstacle for constructing kinetic models of metabolism is uncertainty in the kinetic properties of enzymes. Currently, available methods for building kinetic models can cope indirectly with uncertainties by integrating data from different biological levels and origins into models. In this study, we use the recently proposed computational approach iSCHRUNK (in Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models), which combines Monte Carlo parameter sampling methods and machine learning techniques, in the context of Bayesian inference. Monte Carlo parameter sampling methods allow us to exploit synergies between different data sources and generate a population of kinetic models that are consistent with the available data and physicochemical laws. The machine learning allows us to data-mine the a priori generated kinetic parameters together with the integrated datasets and derive posterior distributions of kinetic parameters consistent with the observed physiology. In this work, we used iSCHRUNK to address a design question: can we identify which are the kinetic parameters and what are their values that give rise to a desired metabolic behavior? Such information is important for a wide variety of studies ranging from biotechnology to medicine. To illustrate the proposed methodology, we performed Metabolic Control Analysis, computed the flux control coefficients of the xylose uptake (XTR), and identified parameters that ensure a rate improvement of XTR in a glucose-xylose co-utilizing S. cerevisiae strain. Our results indicate that only three kinetic parameters need to be accurately characterized to describe the studied physiology, and ultimately to design and control the desired responses of the metabolism. This framework paves the way for a new generation of methods that will systematically integrate the wealth of available omics data and efficiently extract the information necessary for metabolic engineering and synthetic biology decisions.


Assuntos
Modelos Biológicos , Algoritmos , Teorema de Bayes , Fenômenos Bioquímicos , Biologia Computacional , Hexoquinase/metabolismo , Cinética , Aprendizado de Máquina , Engenharia Metabólica , Redes e Vias Metabólicas , Método de Monte Carlo , Saccharomyces cerevisiae/metabolismo , Incerteza , Xilose/metabolismo
4.
Metab Eng ; 52: 29-41, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30455161

RESUMO

Large-scale kinetic models are used for designing, predicting, and understanding the metabolic responses of living cells. Kinetic models are particularly attractive for the biosynthesis of target molecules in cells as they are typically better than other types of models at capturing the complex cellular biochemistry. Using simpler stoichiometric models as scaffolds, kinetic models are built around a steady-state flux profile and a metabolite concentration vector that are typically determined via optimization. However, as the underlying optimization problem is underdetermined, even after incorporating available experimental omics data, one cannot uniquely determine the operational configuration in terms of metabolic fluxes and metabolite concentrations. As a result, some reactions can operate in either the forward or reverse direction while still agreeing with the observed physiology. Here, we analyze how the underlying uncertainty in intracellular fluxes and concentrations affects predictions of constructed kinetic models and their design in metabolic engineering and systems biology studies. To this end, we integrated the omics data of optimally grown Escherichia coli into a stoichiometric model and constructed populations of non-linear large-scale kinetic models of alternative steady-state solutions consistent with the physiology of the E. coli aerobic metabolism. We performed metabolic control analysis (MCA) on these models, highlighting that MCA-based metabolic engineering decisions are strongly affected by the selected steady state and appear to be more sensitive to concentration values rather than flux values. To incorporate this into future studies, we propose a workflow for moving towards more reliable and robust predictions that are consistent with all alternative steady-state solutions. This workflow can be applied to all kinetic models to improve the consistency and accuracy of their predictions. Additionally, we show that, irrespective of the alternative steady-state solution, increased activity of phosphofructokinase and decreased ATP maintenance requirements would improve cellular growth of optimally grown E. coli.


Assuntos
Cinética , Engenharia Metabólica/métodos , Metabolismo/fisiologia , Modelos Teóricos , Escherichia coli/metabolismo , Análise do Fluxo Metabólico , Metabolismo/genética , Modelos Biológicos , Incerteza
5.
Metab Eng ; 33: 158-168, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26474788

RESUMO

Accurate determination of physiological states of cellular metabolism requires detailed information about metabolic fluxes, metabolite concentrations and distribution of enzyme states. Integration of fluxomics and metabolomics data, and thermodynamics-based metabolic flux analysis contribute to improved understanding of steady-state properties of metabolism. However, knowledge about kinetics and enzyme activities though essential for quantitative understanding of metabolic dynamics remains scarce and involves uncertainty. Here, we present a computational methodology that allow us to determine and quantify the kinetic parameters that correspond to a certain physiology as it is described by a given metabolic flux profile and a given metabolite concentration vector. Though we initially determine kinetic parameters that involve a high degree of uncertainty, through the use of kinetic modeling and machine learning principles we are able to obtain more accurate ranges of kinetic parameters, and hence we are able to reduce the uncertainty in the model analysis. We computed the distribution of kinetic parameters for glucose-fed E. coli producing 1,4-butanediol and we discovered that the observed physiological state corresponds to a narrow range of kinetic parameters of only a few enzymes, whereas the kinetic parameters of other enzymes can vary widely. Furthermore, this analysis suggests which are the enzymes that should be manipulated in order to engineer the reference state of the cell in a desired way. The proposed approach also sets up the foundations of a novel type of approaches for efficient, non-asymptotic, uniform sampling of solution spaces.


Assuntos
Butileno Glicóis/metabolismo , Escherichia coli/metabolismo , Glucose/metabolismo , Análise do Fluxo Metabólico/métodos , Metaboloma/fisiologia , Software , Simulação por Computador , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano/fisiologia , Cinética , Modelos Biológicos , Proteoma/metabolismo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transdução de Sinais/fisiologia
6.
Metab Eng ; 35: 148-159, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26855240

RESUMO

Rational metabolic engineering methods are increasingly employed in designing the commercially viable processes for the production of chemicals relevant to pharmaceutical, biotechnology, and food and beverage industries. With the growing availability of omics data and of methodologies capable to integrate the available data into models, mathematical modeling and computational analysis are becoming important in designing recombinant cellular organisms and optimizing cell performance with respect to desired criteria. In this contribution, we used the computational framework ORACLE (Optimization and Risk Analysis of Complex Living Entities) to analyze the physiology of recombinant Escherichia coli producing 1,4-butanediol (BDO) and to identify potential strategies for improved production of BDO. The framework allowed us to integrate data across multiple levels and to construct a population of large-scale kinetic models despite the lack of available information about kinetic properties of every enzyme in the metabolic pathways. We analyzed these models and we found that the enzymes that primarily control the fluxes leading to BDO production are part of central glycolysis, the lower branch of tricarboxylic acid (TCA) cycle and the novel BDO production route. Interestingly, among the enzymes between the glucose uptake and the BDO pathway, the enzymes belonging to the lower branch of TCA cycle have been identified as the most important for improving BDO production and yield. We also quantified the effects of changes of the target enzymes on other intracellular states like energy charge, cofactor levels, redox state, cellular growth, and byproduct formation. Independent earlier experiments on this strain confirmed that the computationally obtained conclusions are consistent with the experimentally tested designs, and the findings of the present studies can provide guidance for future work on strain improvement. Overall, these studies demonstrate the potential and effectiveness of ORACLE for the accelerated design of microbial cell factories.


Assuntos
Butileno Glicóis/metabolismo , Escherichia coli/metabolismo , Modelos Biológicos , Organismos Geneticamente Modificados/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Escherichia coli/genética , Cinética , Organismos Geneticamente Modificados/genética
7.
Nat Commun ; 15(1): 723, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267425

RESUMO

Devising genetic interventions for desired cellular phenotypes remains challenging regarding time and resources. Kinetic models can accelerate this task by simulating metabolic responses to genetic perturbations. However, exhaustive design evaluations with kinetic models are computationally impractical, especially when targeting multiple enzymes. Here, we introduce a framework for efficiently scouting the design space while respecting cellular physiological requirements. The framework employs mixed-integer linear programming and nonlinear simulations with large-scale nonlinear kinetic models to devise genetic interventions while accounting for the network effects of these perturbations. Importantly, it ensures the engineered strain's robustness by maintaining its phenotype close to that of the reference strain. The framework, applied to improve the anthranilate production in E. coli, devises designs for experimental implementation, including eight previously experimentally validated targets. We expect this framework to play a crucial role in future design-build-test-learn cycles, significantly expediting the strain design compared to exhaustive design enumeration.


Assuntos
Escherichia coli , Engenharia Genética , Escherichia coli/genética , Cinética , Aprendizagem , Fenótipo
8.
FEMS Yeast Res ; 12(2): 129-43, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22129227

RESUMO

Many important problems in cell biology arise from the dense nonlinear interactions between functional modules. The importance of mathematical modelling and computer simulation in understanding cellular processes is now indisputable and widely appreciated. Genome-scale metabolic models have gained much popularity and utility in helping us to understand and test hypotheses about these complex networks. However, there are some caveats that come with the use and interpretation of different types of metabolic models, which we aim to highlight here. We discuss and illustrate how the integration of thermodynamic and kinetic properties of the yeast metabolic networks in network analyses can help in understanding and utilizing this organism more successfully in the areas of metabolic engineering, synthetic biology and disease treatment.


Assuntos
Simulação por Computador , Redes e Vias Metabólicas , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Biologia de Sistemas , Termodinâmica , Biocombustíveis , Biotecnologia , Ciclo do Carbono , Genoma Fúngico , Cinética , Engenharia Metabólica , Saccharomyces cerevisiae/genética
9.
Nat Mach Intell ; 4(8): 710-719, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37790987

RESUMO

Kinetic models of metabolism relate metabolic fluxes, metabolite concentrations and enzyme levels through mechanistic relations, rendering them essential for understanding, predicting and optimizing the behaviour of living organisms. However, due to the lack of kinetic data, traditional kinetic modelling often yields only a few or no kinetic models with desirable dynamical properties, making the analysis unreliable and computationally inefficient. We present REKINDLE (Reconstruction of Kinetic Models using Deep Learning), a deep-learning-based framework for efficiently generating kinetic models with dynamic properties matching the ones observed in cells. We showcase REKINDLE's capabilities to navigate through the physiological states of metabolism using small numbers of data with significantly lower computational requirements. The results show that data-driven neural networks assimilate implicit kinetic knowledge and structure of metabolic networks and generate kinetic models with tailored properties and statistical diversity. We anticipate that our framework will advance our understanding of metabolism and accelerate future research in biotechnology and health.

10.
Biotechnol Bioeng ; 108(2): 413-23, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20830674

RESUMO

Mathematical modeling is an indispensable tool for research and development in biotechnology and bioengineering. The formulation of kinetic models of biochemical networks depends on knowledge of the kinetic properties of the enzymes of the individual reactions. However, kinetic data acquired from experimental observations bring along uncertainties due to various experimental conditions and measurement methods. In this contribution, we propose a novel way to model the uncertainty in the enzyme kinetics and to predict quantitatively the responses of metabolic reactions to the changes in enzyme activities under uncertainty. The proposed methodology accounts explicitly for mechanistic properties of enzymes and physico-chemical and thermodynamic constraints, and is based on formalism from systems theory and metabolic control analysis. We achieve this by observing that kinetic responses of metabolic reactions depend: (i) on the distribution of the enzymes among their free form and all reactive states; (ii) on the equilibrium displacements of the overall reaction and that of the individual enzymatic steps; and (iii) on the net fluxes through the enzyme. Relying on this observation, we develop a novel, efficient Monte Carlo sampling procedure to generate all states within a metabolic reaction that satisfy imposed constrains. Thus, we derive the statistics of the expected responses of the metabolic reactions to changes in enzyme levels and activities, in the levels of metabolites, and in the values of the kinetic parameters. We present aspects of the proposed framework through an example of the fundamental three-step reversible enzymatic reaction mechanism. We demonstrate that the equilibrium displacements of the individual enzymatic steps have an important influence on kinetic responses of the enzyme. Furthermore, we derive the conditions that must be satisfied by a reversible three-step enzymatic reaction operating far away from the equilibrium in order to respond to changes in metabolite levels according to the irreversible Michelis-Menten kinetics. The efficient sampling procedure allows easy, scalable, implementation of this methodology to modeling of large-scale biochemical networks.


Assuntos
Fenômenos Bioquímicos/fisiologia , Bioengenharia/métodos , Biotecnologia/métodos , Enzimas/metabolismo , Modelos Teóricos , Cinética
11.
Nat Commun ; 12(1): 4790, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373465

RESUMO

Eukaryotic organisms play an important role in industrial biotechnology, from the production of fuels and commodity chemicals to therapeutic proteins. To optimize these industrial systems, a mathematical approach can be used to integrate the description of multiple biological networks into a single model for cell analysis and engineering. One of the most accurate models of biological systems include Expression and Thermodynamics FLux (ETFL), which efficiently integrates RNA and protein synthesis with traditional genome-scale metabolic models. However, ETFL is so far only applicable for E. coli. To adapt this model for Saccharomyces cerevisiae, we developed yETFL, in which we augmented the original formulation with additional considerations for biomass composition, the compartmentalized cellular expression system, and the energetic costs of biological processes. We demonstrated the ability of yETFL to predict maximum growth rate, essential genes, and the phenotype of overflow metabolism. We envision that the presented formulation can be extended to a wide range of eukaryotic organisms to the benefit of academic and industrial research.


Assuntos
Genoma , Engenharia Metabólica , Redes e Vias Metabólicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biomassa , Biotecnologia , Simulação por Computador , Escherichia coli/genética , Regulação Fúngica da Expressão Gênica , Glucose , Modelos Biológicos , Fenótipo , Termodinâmica
12.
Biotechnol Biofuels ; 13: 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140178

RESUMO

BACKGROUND: Pseudomonas putida is a promising candidate for the industrial production of biofuels and biochemicals because of its high tolerance to toxic compounds and its ability to grow on a wide variety of substrates. Engineering this organism for improved performances and predicting metabolic responses upon genetic perturbations requires reliable descriptions of its metabolism in the form of stoichiometric and kinetic models. RESULTS: In this work, we developed kinetic models of P. putida to predict the metabolic phenotypes and design metabolic engineering interventions for the production of biochemicals. The developed kinetic models contain 775 reactions and 245 metabolites. Furthermore, we introduce here a novel set of constraints within thermodynamics-based flux analysis that allow for considering concentrations of metabolites that exist in several compartments as separate entities. We started by a gap-filling and thermodynamic curation of iJN1411, the genome-scale model of P. putida KT2440. We then systematically reduced the curated iJN1411 model, and we created three core stoichiometric models of different complexity that describe the central carbon metabolism of P. putida. Using the medium complexity core model as a scaffold, we generated populations of large-scale kinetic models for two studies. In the first study, the developed kinetic models successfully captured the experimentally observed metabolic responses to several single-gene knockouts of a wild-type strain of P. putida KT2440 growing on glucose. In the second study, we used the developed models to propose metabolic engineering interventions for improved robustness of this organism to the stress condition of increased ATP demand. CONCLUSIONS: The study demonstrates the potential and predictive capabilities of the kinetic models that allow for rational design and optimization of recombinant P. putida strains for improved production of biofuels and biochemicals. The curated genome-scale model of P. putida together with the developed large-scale stoichiometric and kinetic models represents a significant resource for researchers in industry and academia.

13.
ACS Synth Biol ; 7(8): 1858-1873, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021444

RESUMO

The limited supply of fossil fuels and the establishment of new environmental policies shifted research in industry and academia toward sustainable production of the second generation of biofuels, with methyl ethyl ketone (MEK) being one promising fuel candidate. MEK is a commercially valuable petrochemical with an extensive application as a solvent. However, as of today, a sustainable and economically viable production of MEK has not yet been achieved despite several attempts of introducing biosynthetic pathways in industrial microorganisms. We used BNICE.ch as a retrobiosynthesis tool to discover all novel pathways around MEK. Out of 1325 identified compounds connecting to MEK with one reaction step, we selected 3-oxopentanoate, but-3-en-2-one, but-1-en-2-olate, butylamine, and 2-hydroxy-2-methylbutanenitrile for further study. We reconstructed 3 679 610 novel biosynthetic pathways toward these 5 compounds. We then embedded these pathways into the genome-scale model of E. coli, and a set of 18 622 were found to be the most biologically feasible ones on the basis of thermodynamics and their yields. For each novel reaction in the viable pathways, we proposed the most similar KEGG reactions, with their gene and protein sequences, as candidates for either a direct experimental implementation or as a basis for enzyme engineering. Through pathway similarity analysis we classified the pathways and identified the enzymes and precursors that were indispensable for the production of the target molecules. These retrobiosynthesis studies demonstrate the potential of BNICE.ch for discovery, systematic evaluation, and analysis of novel pathways in synthetic biology and metabolic engineering studies.


Assuntos
Butanonas/metabolismo , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Biologia Computacional/métodos , Escherichia coli/genética , Engenharia Metabólica/métodos , Biologia Sintética/métodos
14.
Biotechnol Biofuels ; 10: 166, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674555

RESUMO

BACKGROUND: Recent advancements in omics measurement technologies have led to an ever-increasing amount of available experimental data that necessitate systems-oriented methodologies for efficient and systematic integration of data into consistent large-scale kinetic models. These models can help us to uncover new insights into cellular physiology and also to assist in the rational design of bioreactor or fermentation processes. Optimization and Risk Analysis of Complex Living Entities (ORACLE) framework for the construction of large-scale kinetic models can be used as guidance for formulating alternative metabolic engineering strategies. RESULTS: We used ORACLE in a metabolic engineering problem: improvement of the xylose uptake rate during mixed glucose-xylose consumption in a recombinant Saccharomyces cerevisiae strain. Using the data from bioreactor fermentations, we characterized network flux and concentration profiles representing possible physiological states of the analyzed strain. We then identified enzymes that could lead to improved flux through xylose transporters (XTR). For some of the identified enzymes, including hexokinase (HXK), we could not deduce if their control over XTR was positive or negative. We thus performed a follow-up experiment, and we found out that HXK2 deletion improves xylose uptake rate. The data from the performed experiments were then used to prune the kinetic models, and the predictions of the pruned population of kinetic models were in agreement with the experimental data collected on the HXK2-deficient S. cerevisiae strain. CONCLUSIONS: We present a design-build-test cycle composed of modeling efforts and experiments with a glucose-xylose co-utilizing recombinant S. cerevisiae and its HXK2-deficient mutant that allowed us to uncover interdependencies between upper glycolysis and xylose uptake pathway. Through this cycle, we also obtained kinetic models with improved prediction capabilities. The present study demonstrates the potential of integrated "modeling and experiments" systems biology approaches that can be applied for diverse applications ranging from biotechnology to drug discovery.

15.
Curr Pharm Des ; 21(6): 806-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25341854

RESUMO

Drug discovery and development is a high-risk enterprise that requires significant investments in capital, time and scientific expertise. The studies of xenobiotic metabolism remain as one of the main topics in the research and development of drugs, cosmetics and nutritional supplements. Antihypertensive drugs are used for the treatment of high blood pressure, which is one the most frequent symptoms of the patients that undergo cardiovascular diseases such as myocardial infraction and strokes. In current cardiovascular disease pharmacology, four drug clusters - Angiotensin Converting Enzyme Inhibitors, Beta-Blockers, Calcium Channel Blockers and Diuretics - cover the major therapeutic characteristics of the most antihypertensive drugs. The pharmacokinetic and specifically the metabolic profile of the antihypertensive agents are intensively studied because of the broad inter-individual variability on plasma concentrations and the diversity on the efficacy response especially due to the P450 dependent metabolic status they present. Several computational methods have been developed with the aim to: (i) model and better understand the human drug metabolism; and (ii) enhance the experimental investigation of the metabolism of small xenobiotic molecules. The main predictive tools these methods employ are rule-based approaches, quantitative structure metabolism/activity relationships and docking approaches. This review paper provides detailed metabolic profiles of the major clusters of antihypertensive agents, including their metabolites and their metabolizing enzymes, and it also provides specific information concerning the computational approaches that have been used to predict the metabolic profile of several antihypertensive drugs.


Assuntos
Anti-Hipertensivos/uso terapêutico , Biologia Computacional , Anti-Hipertensivos/farmacocinética , Humanos , Hipertensão/tratamento farmacológico
16.
Curr Opin Biotechnol ; 36: 146-53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26342586

RESUMO

The overarching ambition of kinetic metabolic modeling is to capture the dynamic behavior of metabolism to such an extent that systems and synthetic biology strategies can reliably be tested in silico. The lack of kinetic data hampers the development of kinetic models, and most of the current models use ad hoc reduced stoichiometry or oversimplified kinetic rate expressions, which may limit their predictive strength. There is a need to introduce the community-level standards that will organize and accelerate the future developments in this area. We introduce here a set of requirements that will ensure the model quality, we examine the current kinetic models with respect to these requirements, and we propose a general workflow for constructing models that satisfy these requirements.


Assuntos
Redes e Vias Metabólicas , Animais , Fenômenos Químicos , Simulação por Computador , Humanos , Cinética , Modelos Biológicos , Fenótipo
17.
Biotechnol J ; 8(9): 1043-57, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23868566

RESUMO

Mathematical modeling is an essential tool for the comprehensive understanding of cell metabolism and its interactions with the environmental and process conditions. Recent developments in the construction and analysis of stoichiometric models made it possible to define limits on steady-state metabolic behavior using flux balance analysis. However, detailed information on enzyme kinetics and enzyme regulation is needed to formulate kinetic models that can accurately capture the dynamic metabolic responses. The use of mechanistic enzyme kinetics is a difficult task due to uncertainty in the kinetic properties of enzymes. Therefore, the majority of recent works considered only mass action kinetics for reactions in metabolic networks. Herein, we applied the optimization and risk analysis of complex living entities (ORACLE) framework and constructed a large-scale mechanistic kinetic model of optimally grown Escherichia coli. We investigated the complex interplay between stoichiometry, thermodynamics, and kinetics in determining the flexibility and capabilities of metabolism. Our results indicate that enzyme saturation is a necessary consideration in modeling metabolic networks and it extends the feasible ranges of metabolic fluxes and metabolite concentrations. Our results further suggest that enzymes in metabolic networks have evolved to function at different saturation states to ensure greater flexibility and robustness of cellular metabolism.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Biologia Computacional , Simulação por Computador , Enzimas/metabolismo , Escherichia coli/crescimento & desenvolvimento , Genoma , Cinética , Termodinâmica
18.
Trends Biotechnol ; 28(8): 391-7, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20646768

RESUMO

The engineering of cells for the production of fuels and chemicals involves simultaneous optimization of multiple objectives, such as specific productivity, extended substrate range and improved tolerance - all under a great degree of uncertainty. The achievement of these objectives under physiological and process constraints will be impossible without the use of mathematical modeling. However, the limited information and the uncertainty in the available information require new methods for modeling and simulation that will characterize the uncertainty and will quantify, in a statistical sense, the expectations of success of alternative metabolic engineering strategies. We discuss these considerations toward developing a framework for the Optimization and Risk Analysis of Complex Living Entities (ORACLE) - a computational method that integrates available information into a mathematical structure to calculate control coefficients.


Assuntos
Bioengenharia , Biocombustíveis , Microbiologia Industrial/métodos , Redes e Vias Metabólicas , Medição de Risco/métodos , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Fungos/enzimologia , Fungos/genética , Fungos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA