Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Biol Chem ; 299(2): 102884, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36626983

RESUMO

Vacuolar/archaeal-type ATPase (V/A-ATPase) is a rotary ATPase that shares a common rotary catalytic mechanism with FoF1 ATP synthase. Structural images of V/A-ATPase obtained by single-particle cryo-electron microscopy during ATP hydrolysis identified several intermediates, revealing the rotary mechanism under steady-state conditions. However, further characterization is needed to understand the transition from the ground state to the steady state. Here, we identified the cryo-electron microscopy structures of V/A-ATPase corresponding to short-lived initial intermediates during the activation of the ground state structure by time-resolving snapshot analysis. These intermediate structures provide insights into how the ground-state structure changes to the active, steady state through the sequential binding of ATP to its three catalytic sites. All the intermediate structures of V/A-ATPase adopt the same asymmetric structure, whereas the three catalytic dimers adopt different conformations. This is significantly different from the initial activation process of FoF1, where the overall structure of the F1 domain changes during the transition from a pseudo-symmetric to a canonical asymmetric structure (PNAS NEXUS, pgac116, 2022). In conclusion, our findings provide dynamical information that will enhance the future prospects for studying the initial activation processes of the enzymes, which have unknown intermediate structures in their functional pathway.


Assuntos
Trifosfato de Adenosina , ATPases Vacuolares Próton-Translocadoras , Trifosfato de Adenosina/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Ativação Enzimática , Conformação Proteica
2.
Biochem Biophys Res Commun ; 508(3): 729-734, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30528390

RESUMO

Alpha-synuclein (a-syn) aggregation in brain is implicated in several synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Until date, at least six disease-associated mutations in a-syn (namely A30P, E46K, H50Q, G51D, A53T, and A53E) are known to cause dominantly inherited familial forms of synucleinopathies. Previous studies using recombinant proteins have reported that a subset of disease-associated mutants show higher aggregation propensities and form spectroscopically distinguishable aggregates compared to wild-type (WT). However, morphological and biochemical comparison of the aggregates for all disease-associated a-syn mutants have not yet been performed. In this study, we performed electron microscopic examination, guanidinium hydrochloride (GdnHCl) denaturation, and protease digestion to classify the aggregates from their respective point mutations. Using electron microscopy we observed variations of amyloid fibrillar morphologies among the aggregates of a-syn mutants, mainly categorized into two groups: twisted fibrils observed for both WT and E46K while straight fibrils for the other mutants. GdnHCl denaturation experiments revealed the a-syn mutants except for E46K were more resistant than WT against the denaturation. Mass spectrometry analysis of protease-treated aggregates showed a variety of protease-resistant cores, which may correspond to their morphological properties. The difference of their properties could be implicated in the clinicopathological difference of synucleinopathies with those mutations.


Assuntos
Proteínas Mutantes/metabolismo , Doença de Parkinson/metabolismo , Agregados Proteicos , alfa-Sinucleína/metabolismo , Animais , Endopeptidase K/metabolismo , Humanos , Camundongos , Proteínas Mutantes/química , Proteínas Mutantes/ultraestrutura , Mutação/genética , alfa-Sinucleína/química , alfa-Sinucleína/ultraestrutura
3.
J Biol Chem ; 289(43): 30005-11, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25202010

RESUMO

The Escherichia coli chaperonin GroEL is a double-ring chaperone that assists protein folding with the aid of GroES and ATP. Asp-398 in GroEL is known as one of the critical residues on ATP hydrolysis because GroEL(D398A) mutant is deficient in ATP hydrolysis (<2% of the wild type) but not in ATP binding. In the archaeal Group II chaperonin, another aspartate residue, Asp-52 in the corresponding E. coli GroEL, in addition to Asp-398 is also important for ATP hydrolysis. We investigated the role of Asp-52 in GroEL and found that ATPase activity of GroEL(D52A) and GroEL(D52A/D398A) mutants was ∼ 20% and <0.01% of wild-type GroEL, respectively, indicating that Asp-52 in E. coli GroEL is also involved in the ATP hydrolysis. GroEL(D52A/D398A) formed a symmetric football-shaped GroEL-GroES complex in the presence of ATP, again confirming the importance of the symmetric complex during the GroEL ATPase cycle. Notably, the symmetric complex of GroEL(D52A/D398A) was extremely stable, with a half-time of ∼ 150 h (∼ 6 days), providing a good model to characterize the football-shaped complex.


Assuntos
Trifosfato de Adenosina/metabolismo , Ácido Aspártico/metabolismo , Chaperonina 60/metabolismo , Escherichia coli/metabolismo , Sítios de Ligação , Chaperonina 10/metabolismo , Chaperonina 10/ultraestrutura , Chaperonina 60/química , Chaperonina 60/ultraestrutura , Hidrólise , Malato Desidrogenase/metabolismo , Proteínas Mutantes/metabolismo , Coloração Negativa , Dobramento de Proteína , Estabilidade Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade , Tiossulfato Sulfurtransferase/metabolismo
4.
Nat Commun ; 14(1): 4090, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429854

RESUMO

F1 domain of ATP synthase is a rotary ATPase complex in which rotation of central γ-subunit proceeds in 120° steps against a surrounding α3ß3 fueled by ATP hydrolysis. How the ATP hydrolysis reactions occurring in three catalytic αß dimers are coupled to mechanical rotation is a key outstanding question. Here we describe catalytic intermediates of the F1 domain in FoF1 synthase from Bacillus PS3 sp. during ATP mediated rotation captured using cryo-EM. The structures reveal that three catalytic events and the first 80° rotation occur simultaneously in F1 domain when nucleotides are bound at all the three catalytic αß dimers. The remaining 40° rotation of the complete 120° step is driven by completion of ATP hydrolysis at αDßD, and proceeds through three sub-steps (83°, 91°, 101°, and 120°) with three associated conformational intermediates. All sub-steps except for one between 91° and 101° associated with phosphate release, occur independently of the chemical cycle, suggesting that the 40° rotation is largely driven by release of intramolecular strain accumulated by the 80° rotation. Together with our previous results, these findings provide the molecular basis of ATP driven rotation of ATP synthases.


Assuntos
Bacillus , Hidrólise , Rotação , Catálise , Óxido Nítrico Sintase , Polímeros , Trifosfato de Adenosina
5.
J Gen Appl Microbiol ; 69(2): 117-124, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37423744

RESUMO

A Thermus thermophilus lytic phage was isolated from a Japanese hot spring using a type IV pili-deficient strain as an indicator host, and designated as φMN1. Electron microscopic (EM) examination revealed that φMN1 had an icosahedral head and a contractile tail, suggesting that φMN1 belonged to Myoviridae. An EM analysis focused on φMN1 adsorption to the Thermus host cell showed that the receptor molecules for the phage were uniformly distributed on the outer surface of the cells. The circular double-stranded DNA of φMN1 was 76,659 base pairs in length, and the guanine and cytosine content was 61.8%. It was predicted to contain 99 open reading frames, and its putative distal tail fiber protein, which is essential for non-piliated host cell surface receptor recognition, was dissimilar in terms of sequence and length with its counterpart in the type IV pili-dependent φYS40. A phage proteomic tree revealed that φMN1 and φYS40 are in the same cluster, but many genes had low sequence similarities and some seemed to be derived from both mesophilic and thermophilic organisms. The gene organization suggested that φMN1 evolved from a non-Thermus phage through large-scale recombination events of the genes determining the host specificity, followed by gradual evolution by recombination of both the thermophilic and mesophilic DNAs assimilated by the host Thermus cells. This newly isolated phage will provide evolutionary insights into thermophilic phages.


Assuntos
Bacteriófagos , Fontes Termais , Bacteriófagos/genética , Thermus thermophilus/genética , Proteômica , Japão , Fases de Leitura Aberta
6.
Biochim Biophys Acta Bioenerg ; 1864(4): 148986, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37270022

RESUMO

Photosystem I (PSI) from the green alga Chlamydomonas reinhardtii, with various numbers of membrane bound antenna complexes (LHCI), has been described in great detail. In contrast, structural characterization of soluble binding partners is less advanced. Here, we used X-ray crystallography and single particle cryo-EM to investigate three structures of the PSI-LHCI supercomplex from Chlamydomonas reinhardtii. An X-ray structure demonstrates the absence of six chlorophylls from the luminal side of the LHCI belts, suggesting these pigments were either physically absent or less stably associated with the complex, potentially influencing excitation transfer significantly. CryoEM revealed extra densities on luminal and stromal sides of the supercomplex, situated in the vicinity of the electron transfer sites. These densities disappeared after the binding of oxidized ferredoxin to PSI-LHCI. Based on these structures, we propose the existence of a PSI-LHCI resting state with a reduced active chlorophyll content, electron donors docked in waiting positions and regulatory binding partners positioned at the electron acceptor site. The resting state PSI-LHCI supercomplex would be recruited to its active form by the availability of oxidized ferredoxin.


Assuntos
Chlamydomonas reinhardtii , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Chlamydomonas reinhardtii/metabolismo , Ferredoxinas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Clorofila/metabolismo
7.
ACS Cent Sci ; 9(3): 494-507, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36968527

RESUMO

Functional reintegration into lipid environments represents a major challenge for in vitro investigation of integral membrane proteins (IMPs). Here, we report a new approach, termed LMNG Auto-insertion Reintegration (LAiR), for reintegration of IMPs into lipid bilayers within minutes. The resulting proteoliposomes displayed an unprecedented capability to maintain proton gradients and long-term stability. LAiR allowed for monitoring catalysis of a membrane-bound, physiologically relevant polyisoprenoid quinone substrate by Escherichia coli cytochromes bo 3 (cbo 3) and bd (cbd) under control of the proton motive force. LAiR also facilitated bulk-phase detection and physiological assessment of the "proton leak" in cbo 3, a controversial catalytic state that previously was only approachable at the single-molecule level. LAiR maintained the multisubunit integrity and higher-order oligomeric states of the delicate mammalian F-ATP synthase. Given that LAiR can be applied to both liposomes and planar membrane bilayers and is compatible with IMPs and lipids from prokaryotic and eukaryotic sources, we anticipate LAiR to be applied broadly across basic research, pharmaceutical applications, and biotechnology.

8.
PNAS Nexus ; 1(3): pgac116, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36741449

RESUMO

Adenosine triphosphate (ATP) synthases (F0F1-ATPases) are crucial for all aerobic organisms. F1, a water-soluble domain, can catalyze both the synthesis and hydrolysis of ATP with the rotation of the central γε rotor inside a cylinder made of α 3 ß 3 in three different conformations (referred to as ß E, ß TP, and ß DP). In this study, we determined multiple cryo-electron microscopy structures of bacterial F0F1 exposed to different reaction conditions. The structures of nucleotide-depleted F0F1 indicate that the ε subunit directly forces ß TP to adopt a closed form independent of the nucleotide binding to ß TP. The structure of F0F1 under conditions that permit only a single catalytic ß subunit per enzyme to bind ATP is referred to as unisite catalysis and reveals that ATP hydrolysis unexpectedly occurs on ß TP instead of ß DP, where ATP hydrolysis proceeds in the steady-state catalysis of F0F1. This indicates that the unisite catalysis of bacterial F0F1 significantly differs from the kinetics of steady-state turnover with continuous rotation of the shaft.

9.
Sci Rep ; 12(1): 21428, 2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36504202

RESUMO

Marseilleviridae is a family of giant viruses, showing a characteristic internal membrane with extrusions underneath the icosahedral vertices. However, such large objects, with a maximum diameter of 250 nm are technically difficult to examine at sub-nanometre resolution by cryo-electron microscopy. Here, we tested the utility of 1 MV high-voltage cryo-EM (cryo-HVEM) for single particle structural analysis (SPA) of giant viruses using tokyovirus, a species of Marseilleviridae, and revealed the capsid structure at 7.7 Å resolution. The capsid enclosing the viral DNA consisted primarily of four layers: (1) major capsid proteins (MCPs) and penton proteins, (2) minor capsid proteins (mCPs), (3) scaffold protein components (ScPCs), and (4) internal membrane. The mCPs showed a novel capsid lattice consisting of eight protein components. ScPCs connecting the icosahedral vertices supported the formation of the membrane extrusions, and possibly act like tape measure proteins reported in other giant viruses. The density on top of the MCP trimer was suggested to include glycoproteins. This is the first attempt at cryo-HVEM SPA. We found the primary limitations to be the lack of automated data acquisition and software support for collection and processing and thus achievable resolution. However, the results pave the way for using cryo-HVEM for structural analysis of larger biological specimens.


Assuntos
Vírus Gigantes , Proteínas do Capsídeo , Microscopia Crioeletrônica , Capsídeo , Membranas
10.
Elife ; 112022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35762204

RESUMO

Microtubules are dynamic polymers consisting of αß-tubulin heterodimers. The initial polymerization process, called microtubule nucleation, occurs spontaneously via αß-tubulin. Since a large energy barrier prevents microtubule nucleation in cells, the γ-tubulin ring complex is recruited to the centrosome to overcome the nucleation barrier. However, a considerable number of microtubules can polymerize independently of the centrosome in various cell types. Here, we present evidence that the minus-end-binding calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) serves as a strong nucleator for microtubule formation by significantly reducing the nucleation barrier. CAMSAP2 co-condensates with αß-tubulin via a phase separation process, producing plenty of nucleation intermediates. Microtubules then radiate from the co-condensates, resulting in aster-like structure formation. CAMSAP2 localizes at the co-condensates and decorates the radiating microtubule lattices to some extent. Taken together, these in vitro findings suggest that CAMSAP2 supports microtubule nucleation and growth by organizing a nucleation centre as well as by stabilizing microtubule intermediates and growing microtubules.


Cells are able to hold their shape thanks to tube-like structures called microtubules that are made of hundreds of tubulin proteins. Microtubules are responsible for maintaining the uneven distribution of molecules throughout the cell, a phenomenon known as polarity that allows cells to differentiate into different types with various roles. A protein complex called the γ-tubulin ring complex (γ-TuRC) is necessary for microtubules to form. This protein helps bind the tubulin proteins together and stabilises microtubules. However, recent research has found that in highly polarized cells such as neurons, which have highly specialised regions, microtubules can form without γ-TuRC. Searching for the proteins that could be filling in for γ-TuRC in these cells some evidence has suggested that a group known as CAMSAPs may be involved, but it is not known how. To characterize the role of CAMSAPs, Imasaki, Kikkawa et al. studied how one of these proteins, CAMSAP2, interacts with tubulins. To do this, they reconstituted both CAMSAP2 and tubulins using recombinant biotechnology and mixed them in solution. These experiments showed that CAMSAP2 can help form microtubules by bringing together their constituent proteins so that they can bind to each other more easily. Once microtubules start to form, CAMSAP2 continues to bind to them, stabilizing them and enabling them to grow to full size. These results shed light on how polarity is established in cells such as neurons, muscle cells, and epithelial cells. Additionally, the ability to observe intermediate structures during microtubule formation can provide insights into the processes that these structures are involved in.


Assuntos
Espectrina , Tubulina (Proteína) , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Espectrina/metabolismo , Tubulina (Proteína)/metabolismo
11.
Proc Natl Acad Sci U S A ; 105(32): 11110-5, 2008 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-18682561

RESUMO

Prostaglandins (PG) are bioactive lipids produced from arachidonic acid via the action of cyclooxygenases and terminal PG synthases. Microsomal prostaglandin E synthase 1 (MPGES1) constitutes an inducible glutathione-dependent integral membrane protein that catalyzes the oxidoreduction of cyclooxygenase derived PGH(2) into PGE(2). MPGES1 has been implicated in a number of human diseases or pathological conditions, such as rheumatoid arthritis, fever, and pain, and is therefore regarded as a primary target for development of novel antiinflammatory drugs. To provide a structural basis for insight in the catalytic mechanism, we determined the structure of MPGES1 in complex with glutathione by electron crystallography from 2D crystals induced in the presence of phospholipids. Together with results from site-directed mutagenesis and activity measurements, we can thereby demonstrate the role of specific amino acid residues. Glutathione is found to bind in a U-shaped conformation at the interface between subunits in the protein trimer. It is exposed to a site facing the lipid bilayer, which forms the specific environment for the oxidoreduction of PGH(2) to PGE(2) after displacement of the cytoplasmic half of the N-terminal transmembrane helix. Hence, insight into the dynamic behavior of MPGES1 and homologous membrane proteins in inflammation and detoxification is provided.


Assuntos
Dinoprostona/química , Mediadores da Inflamação/química , Oxirredutases Intramoleculares/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Fosfolipídeos/química , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Ácido Araquidônico/química , Ácido Araquidônico/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/enzimologia , Artrite Reumatoide/genética , Catálise , Dinoprostona/genética , Dinoprostona/metabolismo , Febre/tratamento farmacológico , Febre/enzimologia , Febre/genética , Glutationa/química , Glutationa/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Oxirredução , Dor/tratamento farmacológico , Dor/enzimologia , Dor/genética , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Prostaglandina H2/química , Prostaglandina H2/genética , Prostaglandina H2/metabolismo , Prostaglandina-E Sintases , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
12.
Structure ; 17(2): 287-93, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19217399

RESUMO

The chaperonin GroEL interacts with various proteins, leading them to adopt their correct conformations with the aid of GroES and ATP. The actual mechanism is still being debated. In this study, by use of cryo-electron microscopy, we determined the solution structure of the Thermus thermophilus GroEL-GroES complex encapsulating its substrate proteins. We observed the averaged density of substrate proteins in the center of the GroEL-GroES cavity. The position of the averaged substrate density in the cavity suggested a repulsive interaction between a majority of the substrate proteins and the interior wall of the cavity, which is suitable for substrate release. In addition, we observed a distortion of the cis-GroEL ring, especially at the position near the substrate, which indicated that the interaction between the encapsulated proteins and the GroEL ring results in an adjustment in the cavity's shape to accommodate the substrate.


Assuntos
Chaperonina 10/química , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/metabolismo , Thermus thermophilus/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/fisiologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo
14.
Sci Adv ; 7(9)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33637535

RESUMO

Light-responsive regulation of ciliary motility is known to be conducted through modulation of dyneins, but the mechanism is not fully understood. Here, we report a novel subunit of the two-headed f/I1 inner arm dynein, named DYBLUP, in animal spermatozoa and a unicellular green alga. This subunit contains a BLUF (sensors of blue light using FAD) domain that appears to directly modulate dynein activity in response to light. DYBLUP (dynein-associated BLUF protein) mediates the connection between the f/I1 motor domain and the tether complex that links the motor to the doublet microtubule. Chlamydomonas lacking the DYBLUP ortholog shows both positive and negative phototaxis but becomes acclimated and attracted to high-intensity blue light. These results suggest a mechanism to avoid toxic strong light via direct photoregulation of dyneins.

15.
J Struct Biol ; 169(3): 406-12, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20005958

RESUMO

The C-terminal membrane domain of erythrocyte band 3 functions as an anion exchanger. Here, we report the three-dimensional (3D) structure of the membrane domain in an inhibitor-stabilized, outward-open conformation at 18A resolution. Unstained, frozen-hydrated tubular crystals containing the membrane domain of band 3 purified from human red blood cells (hB3MD) were examined using cryo-electron microscopy and iterative helical real-space reconstruction (IHRSR). The 3D image reconstruction of the tubular crystals showed the molecular packing of hB3MD dimers with dimensions of 60 x 110 A in the membrane plane and a thickness of 70A across the membrane. Immunoelectron microscopy and carboxyl-terminal digestion demonstrated that the intracellular surface of hB3MD was exposed on the outer surface of the tubular crystal. A 3D density map revealed that hB3MD consists of at least two subdomains and that the outward-open form is characterized by a large hollow area on the extracellular surface and continuous density on the intracellular surface.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/ultraestrutura , Proteína 1 de Troca de Ânion do Eritrócito/química , Microscopia Crioeletrônica , Eletroforese em Gel de Poliacrilamida , Membrana Eritrocítica/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Estrutura Terciária de Proteína
16.
Proc Natl Acad Sci U S A ; 104(51): 20256-61, 2007 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18077374

RESUMO

ATP synthesis by V-ATPase from the thermophilic bacterium Thermus thermophilus driven by the acid-base transition was investigated. The rate of ATP synthesis increased in parallel with the increase in proton motive force (PMF) >110 mV, which is composed of a difference in proton concentration (DeltapH) and the electrical potential differences (DeltaPsi) across membranes. The optimum rate of synthesis reached 85 s(-1), and the H(+)/ATP ratio of 4.0 +/- 0.1 was obtained. ATP was synthesized at a considerable rate solely by DeltapH, indicating DeltaPsi was not absolutely required for synthesis. Consistent with the H(+)/ATP ratio, cryoelectron micrograph images of 2D crystals of the membrane-bound rotor ring of the V-ATPase at 7.0-A resolution showed the presence of 12 V(o)-c subunits, each composed of two transmembrane helices. These results indicate that symmetry mismatch between the rotor and catalytic domains is not obligatory for rotary ATPases/synthases.


Assuntos
Trifosfato de Adenosina/biossíntese , Thermus thermophilus/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , Domínio Catalítico , Microscopia Crioeletrônica , Cristalização , Hidrogênio/química , Concentração de Íons de Hidrogênio , Subunidades Proteicas/química
17.
Nat Struct Mol Biol ; 27(3): 288-296, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32123390

RESUMO

The iota toxin produced by Clostridium perfringens type E is a binary toxin comprising two independent polypeptides: Ia, an ADP-ribosyltransferase, and Ib, which is involved in cell binding and translocation of Ia across the cell membrane. Here we report cryo-EM structures of the translocation channel Ib-pore and its complex with Ia. The high-resolution Ib-pore structure demonstrates a similar structural framework to that of the catalytic ϕ-clamp of the anthrax protective antigen pore. However, the Ia-bound Ib-pore structure shows a unique binding mode of Ia: one Ia binds to the Ib-pore, and the Ia amino-terminal domain forms multiple weak interactions with two additional Ib-pore constriction sites. Furthermore, Ib-binding induces tilting and partial unfolding of the Ia N-terminal α-helix, permitting its extension to the ϕ-clamp gate. This new mechanism of N-terminal unfolding is crucial for protein translocation.


Assuntos
ADP Ribose Transferases/química , Antígenos de Bactérias/química , Toxinas Bacterianas/química , Clostridium perfringens/química , Subunidades Proteicas/química , ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , Sequência de Aminoácidos , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sítios de Ligação , Clonagem Molecular , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Clostridium perfringens/patogenicidade , Microscopia Crioeletrônica , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
18.
Elife ; 92020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32639230

RESUMO

V-ATPase is an energy converting enzyme, coupling ATP hydrolysis/synthesis in the hydrophilic V1 domain, with proton flow through the Vo membrane domain, via rotation of the central rotor complex relative to the surrounding stator apparatus. Upon dissociation from the V1 domain, the Vo domain of the eukaryotic V-ATPase can adopt a physiologically relevant auto-inhibited form in which proton conductance through the Vo domain is prevented, however the molecular mechanism of this inhibition is not fully understood. Using cryo-electron microscopy, we determined the structure of both the holo V/A-ATPase and isolated Vo at near-atomic resolution, respectively. These structures clarify how the isolated Vo domain adopts the auto-inhibited form and how the holo complex prevents formation of the inhibited Vo form.


Assuntos
Proteínas de Bactérias/química , Thermus thermophilus/química , ATPases Vacuolares Próton-Translocadoras/química , Microscopia Crioeletrônica , Hidrólise , Estrutura Secundária de Proteína , Thermus thermophilus/enzimologia
19.
Biophys Physicobiol ; 16: 140-146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31660281

RESUMO

Proton-translocating rotary ATPases couple proton influx across the membrane domain and ATP hydrolysis/synthesis in the soluble domain through rotation of the central rotor axis against the surrounding peripheral stator apparatus. It is a significant challenge to determine the structure of rotary ATPases due to their intrinsic conformational heterogeneity and instability. Recent progress of single particle analysis of protein complexes using cryogenic electron microscopy (cryo-EM) has enabled the determination of whole rotary ATPase structures and made it possible to classify different rotational states of the enzymes at a near atomic resolution. Three cryo-EM maps corresponding to different rotational states of the V/A type H+-rotary ATPase from a bacterium Thermus thermophilus provide insights into the rotation of the whole complex, which allow us to determine the movement of each subunit during rotation. In addition, this review describes methodological developments to determine higher resolution cryo-EM structures, such as specimen preparation, to improve the image contrast of membrane proteins.

20.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1410-1420, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30790619

RESUMO

Synucleinopathies comprise a diverse group of neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. These share a common pathological feature, the deposition of alpha-synuclein (a-syn) in neurons or oligodendroglia. A-syn is highly conserved in vertebrates, but the primary sequence of mouse a-syn differs from that of human at seven positions. However, structural differences of their aggregates remain to be fully characterized. In this study, we found that human and mouse a-syn aggregated in vitro formed morphologically distinct amyloid fibrils exhibiting twisted and straight structures, respectively. Furthermore, we identified different protease-resistant core regions, long and short, in human and mouse a-syn aggregates. Interestingly, among the seven unconserved amino acids, only A53T substitution, one of the familial PD mutations, was responsible for structural conversion to the straight-type. Finally, we checked whether the structural differences are transmissible by seeding and found that human a-syn seeded with A53T aggregates formed straight-type fibrils with short protease-resistant cores. These results suggest that a-syn aggregates form sequence-dependent polymorphic fibrils upon spontaneous aggregation but become seed structure-dependent upon seeding.


Assuntos
Amiloide/ultraestrutura , Agregados Proteicos , alfa-Sinucleína/ultraestrutura , Sequência de Aminoácidos , Substituição de Aminoácidos , Amiloide/genética , Amiloide/metabolismo , Animais , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Camundongos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/ultraestrutura , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA