Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Microbiology (Reading) ; 169(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36809081

RESUMO

The mutualistic symbiosis between the Hawaiian bobtail squid Euprymna scolopes and the marine bacterium Vibrio fischeri is a powerful experimental system for determining how intercellular interactions impact animal-bacterial associations. In nature, this symbiosis features multiple strains of V. fischeri within each adult animal, which indicates that different strains initially colonize each squid. Various studies have demonstrated that certain strains of V. fischeri possess a type-VI secretion system (T6SS), which can inhibit other strains from establishing symbiosis within the same host habitat. The T6SS is a bacterial melee weapon that enables a cell to kill adjacent cells by translocating toxic effectors via a lancet-like apparatus. This review describes the progress that has been made in understanding the factors that govern the structure and expression of the T6SS in V. fischeri and its effect on the symbiosis.


Assuntos
Sistemas de Secreção Tipo VI , Vibrio , Animais , Aliivibrio fischeri , Sistemas de Secreção Tipo VI/metabolismo , Simbiose , Decapodiformes/microbiologia , Ecossistema
2.
Isr J Chem ; 63(5-6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38524670

RESUMO

Quorum sensing is an intercellular signaling mechanism that enables bacterial cells to coordinate population-level behaviors. How quorum sensing functions in natural habitats remains poorly understood. Vibrio fischeri is a bacterial symbiont of the Hawaiian bobtail squid Euprymna scolopes and depends on LuxI/LuxR quorum sensing to produce the symbiotic trait of bioluminescence. A previous study demonstrated that animals emit light when co-colonized by a Δlux mutant, which lacks several genes within the lux operon that are necessary for bioluminescence production, and a LuxI- mutant, which cannot synthesize the quorum signaling molecule N-3-oxohexanoyl-homoserine lactone. Here, we build upon that observation and show that populations of LuxI- feature elevated promoter activity for the lux operon. We find that population structures comprising of Δlux and LuxI- are attenuated within the squid, but a wild-type strain enables the LuxI- strain type to be maintained in vivo. These experimental results support a model of interpopulation signaling, which provides basic insight into how quorum sensing functions within the natural habitats found within a host.

3.
Mol Microbiol ; 116(3): 926-942, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34212439

RESUMO

Sulfur is in cellular components of bacteria and is, therefore, an element necessary for growth. However, mechanisms by which bacteria satisfy their sulfur needs within a host are poorly understood. Vibrio fischeri is a bacterial symbiont that colonizes, grows, and produces bioluminescence within the light organ of the Hawaiian bobtail squid, which provides an experimental platform for investigating sulfur acquisition in vivo. Like other γ-proteobacteria, V. fischeri fuels sulfur-dependent anabolic processes with intracellular cysteine. Within the light organ, the abundance of a ΔcysK mutant, which cannot synthesize cysteine through sulfate assimilation, is attenuated, suggesting sulfate import is necessary for V. fischeri to establish symbiosis. Genes encoding sulfate-import systems of other bacteria that assimilate sulfate were not identified in the V. fischeri genome. A transposon mutagenesis screen implicated YfbS as a sulfate importer. YfbS is necessary for growth on sulfate and in the marine environment. During symbiosis, a ΔyfbS mutant is attenuated and strongly expresses sulfate-assimilation genes, which is a phenotype associated with sulfur-starved cells. Together, these results suggest V. fischeri imports sulfate via YfbS within the squid light organ, which provides insight into the molecular mechanisms by which bacteria harvest sulfur in vivo.


Assuntos
Aliivibrio fischeri/fisiologia , Decapodiformes/microbiologia , Proteínas de Membrana Transportadoras/genética , Sulfatos/metabolismo , Enxofre/metabolismo , Simbiose , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Cisteína/metabolismo , Interações entre Hospedeiro e Microrganismos , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese , Mutação , Filogenia
4.
Proc Natl Acad Sci U S A ; 115(36): E8528-E8537, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30127013

RESUMO

Intraspecific competition describes the negative interaction that occurs when different populations of the same species attempt to fill the same niche. Such competition is predicted to occur among host-associated bacteria but has been challenging to study in natural biological systems. Although many bioluminescent Vibrio fischeri strains exist in seawater, only a few strains are found in the light-organ crypts of an individual wild-caught Euprymna scolopes squid, suggesting a possible role for intraspecific competition during early colonization. Using a culture-based assay to investigate the interactions of different V. fischeri strains, we found "lethal" and "nonlethal" isolates that could kill or not kill the well-studied light-organ isolate ES114, respectively. The killing phenotype of these lethal strains required a type VI secretion system (T6SS) encoded in a 50-kb genomic island. Multiple lethal and nonlethal strains could be cultured from the light organs of individual wild-caught adult squid. Although lethal strains eliminate nonlethal strains in vitro, two lethal strains could coexist in interspersed microcolonies that formed in a T6SS-dependent manner. This coexistence was destabilized upon physical mixing, resulting in one lethal strain consistently eliminating the other. When juvenile squid were coinoculated with lethal and nonlethal strains, they occupied different crypts, yet they were observed to coexist within crypts when T6SS function was disrupted. These findings, using a combination of natural isolates and experimental approaches in vitro and in the animal host, reveal the importance of T6SS in spatially separating strains during the establishment of host colonization in a natural symbiosis.


Assuntos
Aliivibrio fischeri/fisiologia , Decapodiformes/microbiologia , Simbiose/fisiologia , Sistemas de Secreção Tipo IV , Aliivibrio fischeri/isolamento & purificação , Animais , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo
5.
J Bacteriol ; 202(7)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-31964698

RESUMO

Vibrio fischeri is a bacterial symbiont that colonizes the light organ of the Hawaiian bobtail squid, Euprymna scolopes Certain strains of V. fischeri express a type VI secretion system (T6SS), which delivers effectors into neighboring cells that result in their death. Strains that are susceptible to the T6SS fail to establish symbiosis with a T6SS-positive strain within the same location of the squid light organ, which is a phenomenon termed strain incompatibility. This study investigates the regulation of the T6SS in V. fischeri strain FQ-A001. Here, we report that the expression of Hcp, a necessary structural component of the T6SS, depends on the alternative sigma factor σ54 and the bacterial enhancer binding protein VasH. VasH is necessary for FQ-A001 to kill other strains, suggesting that VasH-dependent regulation is essential for the T6SS of V. fischeri to affect intercellular interactions. In addition, this study demonstrates VasH-dependent transcription of hcp within host-associated populations of FQ-A001, suggesting that the T6SS is expressed within the host environment. Together, these findings establish a model for transcriptional control of hcp in V. fischeri within the squid light organ, thereby increasing understanding of how the T6SS is regulated during symbiosis.IMPORTANCE Animals harbor bacterial symbionts with specific traits that promote host fitness. Mechanisms that facilitate intercellular interactions among bacterial symbionts impact which bacterial lineages ultimately establish symbiosis with the host. How these mechanisms are regulated is poorly characterized in nonhuman bacterial symbionts. This study establishes a model for the transcriptional regulation of a contact-dependent killing machine, thereby increasing understanding of mechanisms by which different strains compete while establishing symbiosis.


Assuntos
Aliivibrio fischeri/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Simbiose , Sistemas de Secreção Tipo VI , Sequência de Bases , Regulação Bacteriana da Expressão Gênica
6.
Mol Microbiol ; 111(3): 621-636, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30506600

RESUMO

The fitness of host-associated microbes depends on their ability to access nutrients in vivo. Identifying these mechanisms is significant for understanding how microbes have evolved to fill specific ecological niches within a host. Vibrio fischeri is a bioluminescent bacterium that colonizes and proliferates within the light organ of the Hawaiian bobtail squid, which provides an opportunity to study how bacteria grow in vivo. Here, the transcription factor CysB is shown to be necessary for V. fischeri both to grow on several sulfur sources in vitro and to establish symbiosis with juvenile squid. CysB is also found to regulate several genes involved in sulfate assimilation and to contribute to the growth of V. fischeri on cystine, which is the oxidized form of cysteine. A mutant that grows on cystine but not sulfate could establish symbiosis, suggesting that V. fischeri acquires nutrients related to this compound within the host. Finally, CysB-regulated genes are shown to be differentially expressed among the V. fischeri populations occupying the various colonization sites found within the light organ. Together, these results suggest the biogeography of V. fischeri populations within the squid light organ impacts the physiology of this symbiotic bacterium in vivo through CysB-dependent gene regulation.


Assuntos
Aliivibrio fischeri/crescimento & desenvolvimento , Aliivibrio fischeri/metabolismo , Proteínas de Bactérias/metabolismo , Decapodiformes/microbiologia , Regulação Bacteriana da Expressão Gênica , Enxofre/metabolismo , Simbiose , Aliivibrio fischeri/genética , Estruturas Animais/microbiologia , Animais , Proteínas de Bactérias/genética
7.
J Bacteriol ; 201(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31331977

RESUMO

Bacteria that have the capacity to fill the same niche will compete with one another for the space and resources available within an ecosystem. Such competition is heightened among different strains of the same bacterial species. Nevertheless, different strains often inhabit the same host. The molecular mechanisms that impact competition between different strains within the same host are poorly understood. To address this knowledge gap, the type VI secretion system (T6SS), which is a mechanism for bacteria to kill neighboring cells, was examined in the marine bacterium Vibrio fischeri Different strains of V. fischeri naturally colonize the light organ of the bobtail squid Euprymna scolopes The genome of FQ-A001, a T6SS-positive strain, features two hcp genes that are predicted to encode identical subunits of the T6SS. Coincubation assays showed that either hcp gene is sufficient for FQ-A001 to kill another strain via the T6SS in vitro Additionally, induction of hcp expression is sufficient to induce killing activity in an FQ-A001 mutant lacking both hcp genes. Squid colonization assays involving inocula of FQ-A001-derived strains mixed with ES114 revealed that both hcp genes must be deleted for FQ-A001 and ES114 to occupy the same space within the light organ. These experimental results provide insight into the genetic factors necessary for the T6SS of V. fischeri to function in vivo, thereby increasing understanding of the molecular mechanisms that impact strain diversity within a host.IMPORTANCE Different bacterial strains compete to occupy the same niche. The outcome of such competition can be affected by the type VI secretion system (T6SS), an intercellular killing mechanism of bacteria. Here an animal-bacterial symbiosis is used as a platform for study of the genetic factors that promote the T6SS-mediated killing of one strain by another. Identification of the molecular determinants of T6SS function in vivo contributes to the understanding of how different strains interact within a host.


Assuntos
Aliivibrio fischeri/fisiologia , Decapodiformes/microbiologia , Sistemas de Secreção Tipo VI/genética , Aliivibrio fischeri/metabolismo , Animais , Especificidade de Hospedeiro , Família Multigênica , Fenótipo , Simbiose , Sistemas de Secreção Tipo VI/metabolismo
9.
Appl Environ Microbiol ; 82(19): 5990-6, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474717

RESUMO

UNLABELLED: How the function of microbial symbionts is affected by their population/consortium structure within a host remains poorly understood. The symbiosis established between Euprymna scolopes and Vibrio fischeri is a well-characterized host-microbe association in which the function and structure of V. fischeri populations within the host are known: V. fischeri populations produce bioluminescence from distinct crypt spaces within a dedicated host structure called the light organ. Previous studies have revealed that luminescence is required for V. fischeri populations to persist within the light organ and that deletion of the lux gene locus, which is responsible for luminescence in V. fischeri, leads to a persistence defect. In this study, we investigated the impact of bioluminescence on V. fischeri population structure within the light organ. We report that the persistence defect is specific to crypt I, which is the most developmentally mature crypt space within the nascent light organ. This result provides insight into the structure/function relationship that will be useful for future mechanistic studies of squid-Vibrio symbiosis. In addition, our report highlights the potential impact of the host developmental program on the spatiotemporal dynamics of host-microbe interactions. IMPORTANCE: Metazoan development and physiology depend on microbes. The relationship between the symbiotic function of microbes and their spatial structure within the host environment remains poorly understood. Here we demonstrate, using a binary symbiosis, that the host requirement for the symbiotic function of the microbial symbiont is restricted to a specific host environment. Our results also suggest a link between microbial function and host development that may be a fundamental aspect of the more complex host-microbe interactions.


Assuntos
Aliivibrio fischeri/fisiologia , Decapodiformes/microbiologia , Luminescência , Simbiose , Animais
10.
Appl Environ Microbiol ; 82(10): 3082-91, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27016564

RESUMO

UNLABELLED: Animal development and physiology depend on beneficial interactions with microbial symbionts. In many cases, the microbial symbionts are horizontally transmitted among hosts, thereby making the acquisition of these microbes from the environment an important event within the life history of each host. The light organ symbiosis established between the Hawaiian squid Euprymna scolopes and the bioluminescent bacterium Vibrio fischeri is a model system for examining how hosts acquire horizontally transmitted microbial symbionts. Recent studies have revealed that the light organ of wild-caught E. scolopes squid contains polyclonal populations of V. fischeri bacteria; however, the function and development of such strain diversity in the symbiosis are unknown. Here, we report our phenotypic and phylogenetic characterizations of FQ-A001, which is a V. fischeri strain isolated directly from the light organ of an E. scolopes individual. Relative to the type strain ES114, FQ-A001 exhibits similar growth in rich medium but displays increased bioluminescence and decreased motility in soft agar. FQ-A001 outcompetes ES114 in colonizing the crypt spaces of the light organs. Remarkably, we find that animals cocolonized with FQ-A001 and ES114 harbor singly colonized crypts, in contrast to the cocolonized crypts observed from competition experiments involving single genotypes. The results with our two-strain system suggest that strain diversity within the squid light organ is a consequence of diversity in the single-strain colonization of individual crypt spaces. IMPORTANCE: The developmental programs and overall physiologies of most animals depend on diverse microbial symbionts that are acquired from the environment. However, the basic principles underlying how microbes colonize their hosts remain poorly understood. Here, we report our findings of bacterial strain competition within the coevolved animal-microbe symbiosis composed of the Hawaiian squid and bioluminescent bacterium Vibrio fischeri Using fluorescent proteins to differentially label two distinct V. fischeri strains, we find that the strains are unable to coexist in the same niche within the host. Our results suggest that strain competition for distinct colonization sites dictates the strain diversity associated with the host. Our study provides a platform for studying how strain diversity develops within a host.


Assuntos
Aliivibrio fischeri/crescimento & desenvolvimento , Aliivibrio fischeri/genética , Estruturas Animais/microbiologia , Decapodiformes/microbiologia , Decapodiformes/fisiologia , Variação Genética , Simbiose , Aliivibrio fischeri/fisiologia , Animais , Genótipo , Fenótipo , Virulência
11.
Mol Microbiol ; 89(4): 583-95, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23803158

RESUMO

Natural transformation is a major mechanism of horizontal gene transfer in bacteria. By incorporating exogenous DNA elements into chromosomes, bacteria are able to acquire new traits that can enhance their fitness in different environments. Within the past decade, numerous studies have revealed that natural transformation is prevalent among members of the Vibrionaceae, including the pathogen Vibrio cholerae. Four environmental factors: (i) nutrient limitation, (ii) availability of extracellular nucleosides, (iii) high cell density and (iv) the presence of chitin, promote genetic competence and natural transformation in Vibrio cholerae by co-ordinating expression of the regulators CRP, CytR, HapR and TfoX respectively. Studies of other Vibrionaceae members highlight the general importance of natural transformation within this bacterial family.


Assuntos
Competência de Transformação por DNA , Regulação Bacteriana da Expressão Gênica , Vibrionaceae/genética , Transferência Genética Horizontal , Sequências Repetitivas Dispersas , Recombinação Genética , Transformação Bacteriana
12.
Mol Ecol ; 23(6): 1624-1634, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24118200

RESUMO

Experimental studies of the interaction between host and symbiont in a maturing symbiotic organ have presented a challenge for most animal-bacterial associations. Advances in the rearing of the host squid Euprymna scolopes have enabled us to explore the relationship between a defect in symbiont light production and late-stage development (e.g. symbiont persistence and tissue morphogenesis) by experimental colonization with specific strains of the symbiont Vibrio fischeri. During the first 4 weeks postinoculation of juvenile squid, the population of wild-type V. fischeri increased 100-fold; in contrast, a strain defective in light production (Δlux) colonized normally the first day, but exhibited an exponential decline to undetectable levels over subsequent weeks. Co-colonization of organs by both strains affected neither the trajectory of colonization by wild type nor the decline of Δlux levels. Uninfected animals retained the ability to be colonized for at least 2 weeks posthatch. However, once colonized by the wild-type strain for 5 days, a subsequent experimentally induced loss of the symbionts could not be followed by a successful recolonization, indicating the host's entry into a refractory state. However, animals colonized by the Δlux before the loss of their symbionts were receptive to recolonization. Analyses of animals colonized with either a wild-type or a Δlux strain revealed slight, if any, differences in the developmental regression of the ciliated light-organ tissues that facilitate the colonization process. Thus, some other feature(s) of the Δlux strain's defect also may be responsible for its inability to persist, and its failure to induce a refractory state in the host.


Assuntos
Aliivibrio fischeri/fisiologia , Decapodiformes/microbiologia , Simbiose , Estruturas Animais/crescimento & desenvolvimento , Estruturas Animais/microbiologia , Animais , Decapodiformes/crescimento & desenvolvimento , Luz
13.
Mol Microbiol ; 84(5): 795-806, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22500943

RESUMO

The bioluminescence emitted by the marine bacterium Vibrio fischeri is a particularly striking result of individual microbial cells co-ordinating a group behaviour. The genes responsible for light production are principally regulated by the LuxR-LuxI quorum-sensing system. In addition to LuxR-LuxI, numerous other genetic elements and environmental conditions control bioluminescence production. Efforts to mathematically model the LuxR-LuxI system are providing insight into the dynamics of this autoinduction behaviour. The Hawaiian squid Euprymna scolopes forms a natural symbiosis with V. fischeri, and utilizes the symbiont-derived bioluminescence for certain nocturnal behaviours, such as counterillumination. Recent work suggests that the tissue with which V. fischeri associates not only can detect bioluminescence but may also use this light to monitor the V. fischeri population.


Assuntos
Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Regulação Bacteriana da Expressão Gênica , Luminescência , Proteínas Luminescentes/metabolismo , Animais , Decapodiformes/microbiologia , Decapodiformes/fisiologia , Modelos Teóricos , Percepção de Quorum , Transdução de Sinais , Simbiose
14.
Int J Mol Sci ; 14(8): 16386-401, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23965960

RESUMO

Quorum sensing is an intercellular form of communication that bacteria use to coordinate group behaviors such as biofilm formation and the production of antibiotics and virulence factors. The term quorum sensing was originally coined to describe the mechanism underlying the onset of luminescence production in cultures of the marine bacterium Vibrio fischeri. Luminescence and, more generally, quorum sensing are important for V. fischeri to form a mutualistic symbiosis with the Hawaiian bobtail squid, Euprymna scolopes. The symbiosis is established when V. fischeri cells migrate via flagella-based motility from the surrounding seawater into a specialized structure injuvenile squid called the light organ. The cells grow to high cell densities within the light organ where the infection persists over the lifetime of the animal. A hallmark of a successful symbiosis is the luminescence produced by V. fischeri that camouflages the squid at night by eliminating its shadow within the water column. While the regulatory networks governing quorum sensing are critical for properly regulating V. fischeri luminescence within the squid light organ, they also regulate luminescence-independent processes during symbiosis. In this review, we discuss the quorum-sensing network of V. fischeri and highlight its impact at various stages during host colonization.


Assuntos
Aliivibrio fischeri/fisiologia , Decapodiformes/microbiologia , Percepção de Quorum , Animais , Proteínas de Bactérias/fisiologia , Transdução de Sinais , Simbiose
15.
Lab Anim Res ; 39(1): 17, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507806

RESUMO

BACKGROUND: The symbiosis between the Hawaiian bobtail squid Euprymna scolopes and bacterium Vibrio fischeri serves as a model for investigating the molecular mechanisms that promote the initial formation of animal-bacterial symbioses. Research with this system frequently depends on freshly hatched E. scolopes, but the husbandry factors that promote hatchling production in a mariculture facility remain underreported. Here we report on the reproductive performance of E. scolopes in response to decreased mating frequency. RESULTS: One animal cohort was maintained in a mariculture facility for 107 days, with females assigned to either a control group (mating once every 14 days) or an experimental group (mating once every 21 days). No differences between the groups were observed in survival, the number of egg clutches laid, or hatchling counts. Each group featured multiple females that were hyper-reproductive, i.e., they generated more than 8 egg clutches while in captivity. Examination of the distributions for daily hatchling counts of individual egg clutches revealed significant variation in the hatching patterns among clutches that was independent of mating frequency. Finally, an assessment of hatchling production showed that 93.5% of total hatchlings produced by the cohort were derived from egg clutches laid within the first 70 days. CONCLUSIONS: These results suggest a lower mating frequency does not impede hatchling production. Furthermore, the variation in hatchling production among egg clutches provides new insight into the reproductive performance of E. scolopes as a lab animal for microbiology research.

16.
Curr Biol ; 33(19): 4244-4251.e4, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689064

RESUMO

The symbioses that animals form with bacteria play important roles in health and disease, but the molecular details underlying how bacterial symbionts initially assemble within a host remain unclear.1,2,3 The bioluminescent bacterium Vibrio fischeri establishes a light-emitting symbiosis with the Hawaiian bobtail squid Euprymna scolopes by colonizing specific epithelium-lined crypt spaces within a symbiotic organ called the light organ.4 Competition for these colonization sites occurs between different strains of V. fischeri, with the lancet-like type VI secretion system (T6SS) facilitating strong competitive interference that results in strain incompatibility within a crypt space.5,6 Although recent studies have identified regulators of this T6SS, how the T6SS is controlled as symbionts assemble in vivo remains unknown.7,8 Here, we show that T6SS activity is suppressed by N-octanoyl-L-homoserine lactone (C8 HSL), which is a signaling molecule that facilitates quorum sensing in V. fischeri and is important for efficient symbiont assembly.9,10 We find that this signaling depends on the quorum-sensing regulator LitR, which lowers expression of the needle subunit Hcp, a key component of the T6SS, by repressing transcription of the T6SS regulator VasH. We show that LitR-dependent quorum sensing inhibits strain incompatibility within the squid light organ. Collectively, these results provide new insights into the mechanisms by which regulatory networks that promote symbiosis also control competition among symbionts, which in turn may affect the overall symbiont diversity that assembles within a host.

17.
PLoS One ; 18(7): e0287519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440554

RESUMO

Most animals establish long-term symbiotic associations with bacteria that are critical for normal host physiology. The symbiosis that forms between the Hawaiian squid Euprymna scolopes and the bioluminescent bacterium Vibrio fischeri serves as an important model system for investigating the molecular mechanisms that promote animal-bacterial symbioses. E. scolopes hatch from their eggs uncolonized, which has led to the development of squid-colonization assays that are based on introducing culture-grown V. fischeri cells to freshly hatched juvenile squid. Recent studies have revealed that strains often exhibit large differences in how they establish symbiosis. Therefore, we sought to develop a simplified and reproducible protocol that permits researchers to determine appropriate inoculum levels and provides a platform to standardize the assay across different laboratories. In our protocol, we adapt a method commonly used for evaluating the infectivity of pathogens to quantify the symbiotic capacity of V. fischeri strains. The resulting metric, the symbiotic dose-50 (SD50), estimates the inoculum level that is necessary for a specific V. fischeri strain to establish a light-emitting symbiosis. Relative to other protocols, our method requires 2-5-fold fewer animals. Furthermore, the power analysis presented here suggests that the protocol can detect up to a 3-fold change in the SD50 between different strains.


Assuntos
Aliivibrio fischeri , Vibrio , Animais , Aliivibrio fischeri/fisiologia , Simbiose/fisiologia , Decapodiformes/fisiologia , Havaí
18.
Elife ; 122023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37145113

RESUMO

To colonize a host, bacteria depend on an ensemble of signaling systems to convert information about the various environments encountered within the host into specific cellular activities. How these signaling systems coordinate transitions between cellular states in vivo remains poorly understood. To address this knowledge gap, we investigated how the bacterial symbiont Vibrio fischeri initially colonizes the light organ of the Hawaiian bobtail squid Euprymna scolopes. Previous work has shown that the small RNA Qrr1, which is a regulatory component of the quorum-sensing system in V. fischeri, promotes host colonization. Here, we report that transcriptional activation of Qrr1 is inhibited by the sensor kinase BinK, which suppresses cellular aggregation by V. fischeri prior to light organ entry. We show that Qrr1 expression depends on the alternative sigma factor σ54 and the transcription factors LuxO and SypG, which function similar to an OR logic gate, thereby ensuring Qrr1 is expressed during colonization. Finally, we provide evidence that this regulatory mechanism is widespread throughout the Vibrionaceae family. Together, our work reveals how coordination between the signaling pathways underlying aggregation and quorum-sensing promotes host colonization, which provides insight into how integration among signaling systems facilitates complex processes in bacteria.


Assuntos
Proteínas de Ligação a DNA , Simbiose , Animais , Proteínas de Ligação a DNA/metabolismo , Aliivibrio fischeri/genética , Percepção de Quorum , Fatores de Transcrição/metabolismo , Decapodiformes/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
19.
Mol Microbiol ; 82(4): 894-903, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21992506

RESUMO

To successfully colonize and persist within a host niche, bacteria must properly regulate their gene expression profiles. The marine bacterium Vibrio fischeri establishes a mutualistic symbiosis within the light organ of the Hawaiian squid, Euprymna scolopes. Here, we show that the repressor NagC of V. fischeri directly regulates several chitin- and N-acetyl-D-glucosamine-utilization genes that are co-regulated during productive symbiosis. We also demonstrate that repression by NagC is relieved in the presence of N-acetyl-D-glucosamine-6-phosphate, the intracellular form of N-acetyl-D-glucosamine. We find that gene repression by NagC is critical for efficient colonization of E. scolopes. Further, our study shows that NagC regulates genes that affect the normal dynamics of host colonization.


Assuntos
Acetilglucosamina/biossíntese , Aliivibrio fischeri/fisiologia , Decapodiformes/microbiologia , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/metabolismo , Simbiose , Fatores de Virulência/metabolismo , Aliivibrio fischeri/genética , Aliivibrio fischeri/crescimento & desenvolvimento , Animais , Carga Bacteriana , Proteínas Repressoras/genética , Fatores de Virulência/genética
20.
Lab Anim Res ; 38(1): 25, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908064

RESUMO

BACKGROUND: The Hawaiian bobtail squid Euprymna scolopes hosts various marine bacterial symbionts, and these symbioses have served as models for the animal-microbe relationships that are important for host health. Within a light organ, E. scolopes harbors populations of the bacterium Vibrio fischeri, which produce low levels of bioluminescence that the squid uses for camouflage. The symbiosis is initially established after a juvenile squid hatches from its egg and acquires bacterial symbionts from the ambient marine environment. The relative ease with which a cohort of wild-caught E. scolopes can be maintained in a mariculture facility has facilitated over 3 decades of research involving juvenile squid. However, because E. scolopes is native to the Hawaiian archipelago, their transport from Hawaii to research facilities often represents a stress that has the potential to impact their physiology. RESULTS: Here, we describe animal survival and reproductive capacity associated with a cohort of squid assembled from two shipments with markedly different transit times. We found that the lower juvenile squid counts generated by animals with the longer transit time were not due to the discrepancy in shipment but instead to fewer female squid that produced egg clutches at an elevated rate, which we term hyper-reproductivity. We find that hyper-reproductive females were responsible for 58% of the egg clutches laid. CONCLUSIONS: The significance of these findings for E. scolopes biology and husbandry is discussed, thereby providing a platform for future investigation and further development of this cephalopod as a valuable lab animal for microbiology research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA