Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Mycol ; 62(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38429972

RESUMO

Hyphal pellet formation by Aspergillus species in liquid cultures is one of the main obstacles to high-throughput anti-Aspergillus reagent screening. We previously constructed a hyphal dispersion mutant of Aspergillus fumigatus by disrupting the genes encoding the primary cell wall α-1,3-glucan synthase Ags1 and putative galactosaminogalactan synthase Gtb3 (Δags1Δgtb3). Mycelial growth of the mutant in liquid cultures monitored by optical density was reproducible, and the dose-response of hyphal growth to antifungal agents has been quantified by optical density. However, Δags1Δgtb3 still forms hyphal pellets in some rich growth media. Here, we constructed a disruptant lacking all three α-1,3-glucan synthases and galactosaminogalactan synthase (Δags1Δags2Δags3Δgtb3), and confirmed that its hyphae were dispersed in all the media tested. We established an automatic method to monitor hyphal growth of the mutant in a 24-well plate shaken with a real-time plate reader. Dose-dependent growth suppression and unique growth responses to antifungal agents (voriconazole, amphotericin B, and micafungin) were clearly observed. A 96-well plate was also found to be useful for the evaluation of mycelial growth by optical density. Our method is potentially applicable to high-throughput screening for anti-Aspergillus agents.


Assuntos
Antifúngicos , Aspergillus fumigatus , Animais , Aspergillus fumigatus/genética , Antifúngicos/farmacologia , Hifas/genética , Micélio , Anfotericina B
2.
Pathogens ; 13(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38668264

RESUMO

Porphyromonas gingivalis (Pg) utilizes FimA fimbriae to colonize the gingival sulcus and evade the host immune system. The biogenesis of all FimA-related components is positively regulated by the FimS-FimR two-component system, making the FimS sensory protein an attractive target for preventing Pg infection. However, the specific environmental signal received by FimS remains unknown. We constructed random Pg mutant libraries to identify critical amino acid residues for signal sensing by FimS. Optimized error-prone polymerase chain reaction (PCR) was used to introduce a limited number of random mutations in the periplasmic-domain-coding sequence of fimS, and expression vectors carrying various mutants were generated by inverse PCR. More than 500 transformants were obtained from the fimS-knockout Pg strain using the Escherichia coli-Pg conjugal transfer system, whereas only ~100 transformants were obtained using electroporation. Four and six transformant strains showed increased and decreased fimA expression, respectively. Six strains had single amino acid substitutions in the periplasmic domain, indicating critical residues for signal sensing by FimS. This newly developed strategy should be generally applicable and contribute to molecular genetics studies of Pg, including the elucidation of structure-function relationships of proteins of interest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA