Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Cell ; 83(19): 3558-3573.e7, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802028

RESUMO

Cellular senescence is a stress-response mechanism implicated in various physiological processes, diseases, and aging. Current detection approaches have partially addressed the issue of senescent cell identification in clinical specimens. Effective methodologies enabling precise isolation or live tracking of senescent cells are still lacking. In-depth analysis of truly senescent cells is, therefore, an extremely challenging task. We report (1) the synthesis and validation of a fluorophore-conjugated, Sudan Black-B analog (GLF16), suitable for in vivo and in vitro analysis of senescence by fluorescence microscopy and flow cytometry and (2) the development and application of a GLF16-carrying micelle vector facilitating GLF16 uptake by living senescent cells in vivo and in vitro. The compound and the applied methodology render isolation of senescent cells an easy, rapid, and precise process. Straightforward nanocarrier-mediated GLF16 delivery in live senescent cells comprises a unique tool for characterization of senescence at an unprecedented depth.


Assuntos
Senescência Celular , Indicadores e Reagentes , Citometria de Fluxo
2.
Mol Cell ; 83(23): 4272-4289.e10, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37951215

RESUMO

Reactive aldehydes are produced by normal cellular metabolism or after alcohol consumption, and they accumulate in human tissues if aldehyde clearance mechanisms are impaired. Their toxicity has been attributed to the damage they cause to genomic DNA and the subsequent inhibition of transcription and replication. However, whether interference with other cellular processes contributes to aldehyde toxicity has not been investigated. We demonstrate that formaldehyde induces RNA-protein crosslinks (RPCs) that stall the ribosome and inhibit translation in human cells. RPCs in the messenger RNA (mRNA) are recognized by the translating ribosomes, marked by atypical K6-linked ubiquitylation catalyzed by the RING-in-between-RING (RBR) E3 ligase RNF14, and subsequently resolved by the ubiquitin- and ATP-dependent unfoldase VCP. Our findings uncover an evolutionary conserved formaldehyde-induced stress response pathway that protects cells against RPC accumulation in the cytoplasm, and they suggest that RPCs contribute to the cellular and tissue toxicity of reactive aldehydes.


Assuntos
RNA , Ubiquitina-Proteína Ligases , Humanos , RNA/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Formaldeído/toxicidade , Aldeídos/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Nature ; 616(7958): 814-821, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046086

RESUMO

Physiological homeostasis becomes compromised during ageing, as a result of impairment of cellular processes, including transcription and RNA splicing1-4. However, the molecular mechanisms leading to the loss of transcriptional fidelity are so far elusive, as are ways of preventing it. Here we profiled and analysed genome-wide, ageing-related changes in transcriptional processes across different organisms: nematodes, fruitflies, mice, rats and humans. The average transcriptional elongation speed (RNA polymerase II speed) increased with age in all five species. Along with these changes in elongation speed, we observed changes in splicing, including a reduction of unspliced transcripts and the formation of more circular RNAs. Two lifespan-extending interventions, dietary restriction and lowered insulin-IGF signalling, both reversed most of these ageing-related changes. Genetic variants in RNA polymerase II that reduced its speed in worms5 and flies6 increased their lifespan. Similarly, reducing the speed of RNA polymerase II by overexpressing histone components, to counter age-associated changes in nucleosome positioning, also extended lifespan in flies and the division potential of human cells. Our findings uncover fundamental molecular mechanisms underlying animal ageing and lifespan-extending interventions, and point to possible preventive measures.


Assuntos
Envelhecimento , Longevidade , Elongação da Transcrição Genética , Animais , Humanos , Camundongos , Ratos , Envelhecimento/genética , Insulina/metabolismo , Longevidade/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transdução de Sinais , Drosophila melanogaster/genética , Caenorhabditis elegans/genética , RNA Circular , Somatomedinas , Nucleossomos , Histonas , Divisão Celular , Restrição Calórica
4.
Mol Cell ; 81(23): 4907-4923.e8, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34793711

RESUMO

Oncogene-induced senescence (OIS) is an inherent and important tumor suppressor mechanism. However, if not removed timely via immune surveillance, senescent cells also have detrimental effects. Although this has mostly been attributed to the senescence-associated secretory phenotype (SASP) of these cells, we recently proposed that "escape" from the senescent state is another unfavorable outcome. The mechanism underlying this phenomenon remains elusive. Here, we exploit genomic and functional data from a prototypical human epithelial cell model carrying an inducible CDC6 oncogene to identify an early-acquired recurrent chromosomal inversion that harbors a locus encoding the circadian transcription factor BHLHE40. This inversion alone suffices for BHLHE40 activation upon CDC6 induction and driving cell cycle re-entry of senescent cells, and malignant transformation. Ectopic overexpression of BHLHE40 prevented induction of CDC6-triggered senescence. We provide strong evidence in support of replication stress-induced genomic instability being a causative factor underlying "escape" from oncogene-induced senescence.


Assuntos
Senescência Celular , Inversão Cromossômica , Cromossomos/ultraestrutura , Transição Epitelial-Mesenquimal , Neoplasias/genética , Oncogenes , Recombinação Genética , Animais , Brônquios/metabolismo , Sistemas CRISPR-Cas , Ciclo Celular , Transformação Celular Neoplásica , Ritmo Circadiano , Biologia Computacional , Células Epiteliais/metabolismo , Citometria de Fluxo , Genômica , Humanos , Cariotipagem , Camundongos , Camundongos SCID , Neoplasias/metabolismo , Fenótipo , Ligação Proteica , Domínios Proteicos , Fenótipo Secretor Associado à Senescência
5.
Mol Cell ; 75(2): 267-283.e12, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31202576

RESUMO

How spatial chromosome organization influences genome integrity is still poorly understood. Here, we show that DNA double-strand breaks (DSBs) mediated by topoisomerase 2 (TOP2) activities are enriched at chromatin loop anchors with high transcriptional activity. Recurrent DSBs occur at CCCTC-binding factor (CTCF) and cohesin-bound sites at the bases of chromatin loops, and their frequency positively correlates with transcriptional output and directionality. The physiological relevance of this preferential positioning is indicated by the finding that genes recurrently translocating to drive leukemias are highly transcribed and are enriched at loop anchors. These genes accumulate DSBs at recurrent hotspots that give rise to chromosomal fusions relying on the activity of both TOP2 isoforms and on transcriptional elongation. We propose that transcription and 3D chromosome folding jointly pose a threat to genomic stability and are key contributors to the occurrence of genome rearrangements that drive cancer.


Assuntos
DNA Topoisomerases Tipo II/genética , Instabilidade Genômica/genética , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Translocação Genética/genética , Fator de Ligação a CCCTC/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Cromatina/química , Cromatina/genética , Cromossomos/química , Cromossomos/genética , DNA/genética , Quebras de DNA de Cadeia Dupla , Humanos , Leucemia/genética , Leucemia/patologia
6.
Nucleic Acids Res ; 52(4): 1953-1974, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38113271

RESUMO

Regulation of RNA helicase activity, often accomplished by protein cofactors, is essential to ensure target specificity within the complex cellular environment. The largest family of RNA helicase cofactors are the G-patch proteins, but the cognate RNA helicases and cellular functions of numerous human G-patch proteins remain elusive. Here, we discover that GPATCH4 is a stimulatory cofactor of DHX15 that interacts with the DEAH box helicase in the nucleolus via residues in its G-patch domain. We reveal that GPATCH4 associates with pre-ribosomal particles, and crosslinks to the transcribed ribosomal DNA locus and precursor ribosomal RNAs as well as binding to small nucleolar- and small Cajal body-associated RNAs that guide rRNA and snRNA modifications. Loss of GPATCH4 impairs 2'-O-methylation at various rRNA and snRNA sites leading to decreased protein synthesis and cell growth. We demonstrate that the regulation of 2'-O-methylation by GPATCH4 is both dependent on, and independent of, its interaction with DHX15. Intriguingly, the ATPase activity of DHX15 is necessary for efficient methylation of DHX15-dependent sites, suggesting a function of DHX15 in regulating snoRNA-guided 2'-O-methylation of rRNA that requires activation by GPATCH4. Overall, our findings extend knowledge on RNA helicase regulation by G-patch proteins and also provide important new insights into the mechanisms regulating installation of rRNA and snRNA modifications, which are essential for ribosome function and pre-mRNA splicing.


Assuntos
RNA Helicases , RNA Ribossômico , Humanos , Metilação , Ribossomos/metabolismo , RNA Helicases/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo
7.
EMBO J ; 39(1): e101533, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31701553

RESUMO

How cytokine-driven changes in chromatin topology are converted into gene regulatory circuits during inflammation still remains unclear. Here, we show that interleukin (IL)-1α induces acute and widespread changes in chromatin accessibility via the TAK1 kinase and NF-κB at regions that are highly enriched for inflammatory disease-relevant SNPs. Two enhancers in the extended chemokine locus on human chromosome 4 regulate the IL-1α-inducible IL8 and CXCL1-3 genes. Both enhancers engage in dynamic spatial interactions with gene promoters in an IL-1α/TAK1-inducible manner. Microdeletions of p65-binding sites in either of the two enhancers impair NF-κB recruitment, suppress activation and biallelic transcription of the IL8/CXCL2 genes, and reshuffle higher-order chromatin interactions as judged by i4C interactome profiles. Notably, these findings support a dominant role of the IL8 "master" enhancer in the regulation of sustained IL-1α signaling, as well as for IL-8 and IL-6 secretion. CRISPR-guided transactivation of the IL8 locus or cross-TAD regulation by TNFα-responsive enhancers in a different model locus supports the existence of complex enhancer hierarchies in response to cytokine stimulation that prime and orchestrate proinflammatory chromatin responses downstream of NF-κB.


Assuntos
Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Interleucina-1alfa/farmacologia , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/metabolismo , Sítios de Ligação , Células Cultivadas , Quimiocinas/metabolismo , Cromatina/química , Cromatina/genética , Células HeLa , Humanos , MAP Quinase Quinase Quinases/genética , NF-kappa B/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
8.
Mol Syst Biol ; 17(6): e9760, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34166567

RESUMO

Spatial organization and gene expression of mammalian chromosomes are maintained and regulated in conjunction with cell cycle progression. This is perturbed once cells enter senescence and the highly abundant HMGB1 protein is depleted from nuclei to act as an extracellular proinflammatory stimulus. Despite its physiological importance, we know little about the positioning of HMGB1 on chromatin and its nuclear roles. To address this, we mapped HMGB1 binding genome-wide in two primary cell lines. We integrated ChIP-seq and Hi-C with graph theory to uncover clustering of HMGB1-marked topological domains that harbor genes involved in paracrine senescence. Using simplified Cross-Linking and Immuno-Precipitation and functional tests, we show that HMGB1 is also a bona fide RNA-binding protein (RBP) binding hundreds of mRNAs. It presents an interactome rich in RBPs implicated in senescence regulation. The mRNAs of many of these RBPs are directly bound by HMGB1 and regulate availability of SASP-relevant transcripts. Our findings reveal a broader than hitherto assumed role for HMGB1 in coordinating chromatin folding and RNA homeostasis as part of a regulatory loop controlling cell-autonomous and paracrine senescence.


Assuntos
Proteína HMGB1 , RNA , Animais , Senescência Celular/genética , Cromatina/genética , Proteína HMGB1/genética , Homeostase/genética
9.
J Cell Sci ; 132(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31028178

RESUMO

A distinct combination of transcription factors elicits the acquisition of a specific fate and the initiation of a differentiation program. Multiciliated cells (MCCs) are a specialized type of epithelial cells that possess dozens of motile cilia on their apical surface. Defects in cilia function have been associated with ciliopathies that affect many organs, including brain and airway epithelium. Here we show that the geminin coiled-coil domain-containing protein 1 GemC1 (also known as Lynkeas) regulates the transcriptional activation of p73, a transcription factor central to multiciliogenesis. Moreover, we show that GemC1 acts in a trimeric complex with transcription factor E2F5 and tumor protein p73 (officially known as TP73), and that this complex is important for the activation of the p73 promoter. We also provide in vivo evidence that GemC1 is necessary for p73 expression in different multiciliated epithelia. We further show that GemC1 regulates multiciliogenesis through the control of chromatin organization, and the epigenetic marks/tags of p73 and Foxj1. Our results highlight novel signaling cues involved in the commitment program of MCCs across species and tissues.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cílios/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/genética , Proteína Tumoral p73/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Linhagem Celular , Cromatina/metabolismo , Células Epiteliais/citologia , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Ativação Transcricional/genética , Proteína Tumoral p73/genética
10.
Methods ; 170: 33-37, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31283985

RESUMO

Genome organization is now understood to be tightly linked to all genomic functions. Thus, the high-resolution mapping of higher-order chromosomal structures via 3C-based approaches has become an integral tool for studying transcriptional and cell cycle regulation, signaling effects or disease onset. Nonetheless, 3C-based protocols are not without caveats, like dependencies on fixation conditions, restriction enzyme pervasiveness in crosslinked chromatin and ligation efficiency. To address some of these caveats, we describe here the streamlined iHi-C 2.0 protocol that allows for the genome-wide interrogation of native spatial chromatin contacts without a need for chemical fixation. This approach improves ligation efficiency and presents minimal material losses, and is thus suitable for analysing samples with limiting cell numbers. Following high throughput sequencing, iHi-C 2.0 generates high signal-to-noise and focal maps of the interactions within and between mammalian chromosomes under native conditions.


Assuntos
Cromatina/genética , Mapeamento Cromossômico/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Contagem de Células , Fracionamento Celular/métodos , Linhagem Celular , Núcleo Celular/genética , Humanos , Conformação de Ácido Nucleico , Células-Tronco Pluripotentes , Sequenciamento Completo do Genoma/métodos
11.
bioRxiv ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38853907

RESUMO

The remarkable regenerative abilities of flatworms are closely linked to neoblasts - adult pluripotent stem cells that are the only division-competent cell type outside of the reproductive system. Although the presence of neoblast-like cells and whole-body regeneration in other animals has led to the idea that these features may represent the ancestral metazoan state, the evolutionary origin of both remains unclear. Here we show that the catenulid Stenostomum brevipharyngium, a member of the earliest-branching flatworm lineage, lacks conventional neoblasts despite being capable of whole-body regeneration and asexual reproduction. Using a combination of single-nuclei transcriptomics, in situ gene expression analysis, and functional experiments, we find that cell divisions are not restricted to a single cell type and are associated with multiple fully differentiated somatic tissues. Furthermore, the cohort of germline multipotency genes, which are considered canonical neoblast markers, are not expressed in dividing cells, but in the germline instead, and we experimentally show that they are neither necessary for proliferation nor regeneration. Overall, our results challenge the notion that canonical neoblasts are necessary for flatworm regeneration and open up the possibility that neoblast-like cells may have evolved convergently in different animals, independent of their regenerative capacity.

12.
iScience ; 27(2): 108898, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38322992

RESUMO

Myeloperoxidase (MPO) is an enzyme that functions in host defense. MPO is released into the vascular lumen by neutrophils during inflammation and may adhere and subsequently penetrate endothelial cells (ECs) coating vascular walls. We show that MPO enters the nucleus of ECs and binds chromatin independently of its enzymatic activity. MPO drives chromatin decondensation at its binding sites and enhances condensation at neighboring regions. It binds loci relevant for endothelial-to-mesenchymal transition (EndMT) and affects the migratory potential of ECs. Finally, MPO interacts with the RNA-binding factor ILF3 thereby affecting its relative abundance between cytoplasm and nucleus. This interaction leads to change in stability of ILF3-bound transcripts. MPO-knockout mice exhibit reduced number of ECs at scar sites following myocardial infarction, indicating reduced neovascularization. In summary, we describe a non-enzymatic role for MPO in coordinating EndMT and controlling the fate of endothelial cells through direct chromatin binding and association with co-factors.

13.
iScience ; 25(7): 104577, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35789849

RESUMO

Exposure to outer space microgravity poses a risk for the development of various pathologies including cardiovascular disease. To study this, we derived cardiomyocytes (CMs) from human-induced pluripotent stem cells and exposed them to simulated microgravity (SMG). We combined different "omics" and chromosome conformation capture technologies with live-cell imaging of various transgenic lines to discover that SMG impacts on the contractile velocity and function of CMs via the induction of senescence processes. This is linked to SMG-induced changes of reactive oxygen species (ROS) generation and energy metabolism by mitochondria. Taken together, we uncover a microgravity-controlled axis causing contractile dysfunctions to CMs. Our findings can contribute to the design of preventive and therapeutic strategies against senescence-associated disease.

14.
Nat Cancer ; 2(11): 1185-1203, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-35122059

RESUMO

Large-scale genomic profiling of pancreatic cancer (PDAC) has revealed two distinct subtypes: 'classical' and 'basal-like'. Their variable coexistence within the stromal immune microenvironment is linked to differential prognosis; however, the extent to which these neoplastic subtypes shape the stromal immune landscape and impact clinical outcome remains unclear. By combining preclinical models, patient-derived xenografts, as well as FACS-sorted PDAC patient biopsies, we show that the basal-like neoplastic state is sustained via BRD4-mediated cJUN/AP1 expression, which induces CCL2 to recruit tumor necrosis factor (TNF)-α-secreting macrophages. TNF-α+ macrophages force classical neoplastic cells into an aggressive phenotypic state via lineage reprogramming. Integration of ATAC-, ChIP- and RNA-seq data revealed distinct JUNB/AP1 (classical) and cJUN/AP1 (basal-like)-driven regulation of PDAC subtype identity. Pharmacological inhibition of BRD4 led to suppression of the BRD4-cJUN-CCL2-TNF-α axis, restoration of classical subtype identity and a favorable prognosis. Hence, patient-tailored therapy for a cJUNhigh/TNF-αhigh subtype is paramount in overcoming highly inflamed and aggressive PDAC states.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Proteínas de Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Macrófagos/metabolismo , Proteínas Nucleares/genética , Neoplasias Pancreáticas/genética , Prognóstico , Fatores de Transcrição/genética , Microambiente Tumoral/genética , Fator de Necrose Tumoral alfa/genética , Neoplasias Pancreáticas
15.
Nat Commun ; 12(1): 3014, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021162

RESUMO

Members of the chromodomain-helicase-DNA binding (CHD) protein family are chromatin remodelers implicated in human pathologies, with CHD6 being one of its least studied members. We discovered a de novo CHD6 missense mutation in a patient clinically presenting the rare Hallermann-Streiff syndrome (HSS). We used genome editing to generate isogenic iPSC lines and model HSS in relevant cell types. By combining genomics with functional in vivo and in vitro assays, we show that CHD6 binds a cohort of autophagy and stress response genes across cell types. The HSS mutation affects CHD6 protein folding and impairs its ability to recruit co-remodelers in response to DNA damage or autophagy stimulation. This leads to accumulation of DNA damage burden and senescence-like phenotypes. We therefore uncovered a molecular mechanism explaining HSS onset via chromatin control of autophagic flux and genotoxic stress surveillance.


Assuntos
Autofagia/fisiologia , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Autofagia/genética , Cromatina , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Epigenômica , Edição de Genes , Expressão Gênica , Síndrome de Hallermann/genética , Humanos , Mutação , Fenótipo
16.
Genetics ; 181(3): 1045-56, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19139146

RESUMO

Species of the mussel genus Mytilus possess maternally and paternally transmitted mitochondrial genomes. In the interbreeding taxa Mytilus edulis and M. galloprovincialis, several genomes of both types have been fully sequenced. The genome consists of the coding part (which, in addition to protein and RNA genes, contains several small noncoding sequences) and the main control region (CR), which in turn consists of three distinct parts: the first variable (VD1), the conserved (CD), and the second variable (VD2) domain. The maternal and paternal genomes are very similar in gene content and organization, even though they differ by >20% in primary sequence. They differ even more at VD1 and VD2, yet they are remarkably similar at CD. The complete sequence of a genome from the closely related species M. trossulus was previously reported and found to consist of a maternal-like coding part and a paternal-like and a maternal-like CR. From this and from the fact that it was extracted from a male individual, it was inferred that this is a genome that switched from maternal to paternal transmission. Here we provide clear evidence that this genome is the maternal genome of M. trossulus. We have found that in this genome the tRNA(Gln) in the coding region is apparently defective and that an intact copy of this tRNA occurs in the CR, that one of the two conserved domains is missing essential motifs, and that one of the two first variable domains has a high rate of divergence. These features may explain the large size and mosaic structure of the CR of the maternal genome of M. trossulus. We have also obtained CR sequences of the maternal and paternal genomes of M. californianus, a more distantly related species. We compare the control regions from all three species, focusing on the divergence among genomes of different species origin and among genomes of different transmission routes.


Assuntos
Genoma Mitocondrial/genética , Padrões de Herança , Região de Controle de Locus Gênico/genética , Mytilus/genética , Animais , Sequência de Bases , DNA Mitocondrial/genética , Feminino , Genômica , Masculino , Dados de Sequência Molecular , Mytilus/classificação , Filogenia , RNA de Transferência/genética
17.
Curr Opin Cell Biol ; 67: 56-63, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32911122

RESUMO

The spatial conformation of chromatin within the confines of eukaryotic cell nuclei is now acknowledged as a decisive epigenetic mechanism for the modulation of such cellular functions as gene expression regulation, DNA replication or DNA damage repair. Of course, these processes are tightly regulated during organismal development and markedly affected by cellular ageing. Thus, the question that arises is to what extent does folding or refolding of the genome in three-dimensional space underlie the progression of development or ageing? Herein, we discuss recent experimental and modelling evidence to address this question and revisit how these seemingly different processed might represent two sides of the same coin.


Assuntos
Diferenciação Celular/genética , Senescência Celular/genética , Genoma , Conformação de Ácido Nucleico , Cromatina/química , Cromatina/metabolismo , Humanos , Modelos Biológicos
18.
Cell Rep ; 27(5): 1551-1566.e5, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31042480

RESUMO

The cellular responses induced by mitochondrial dysfunction remain elusive. Intrigued by the lack of almost any glomerular phenotype in patients with profound renal ischemia, we comprehensively investigated the primary sources of energy of glomerular podocytes. Combining functional measurements of oxygen consumption rates, glomerular metabolite analysis, and determination of mitochondrial density of podocytes in vivo, we demonstrate that anaerobic glycolysis and fermentation of glucose to lactate represent the key energy source of podocytes. Under physiological conditions, we could detect neither a developmental nor late-onset pathological phenotype in podocytes with impaired mitochondrial biogenesis machinery, defective mitochondrial fusion-fission apparatus, or reduced mtDNA stability and transcription caused by podocyte-specific deletion of Pgc-1α, Drp1, or Tfam, respectively. Anaerobic glycolysis represents the predominant metabolic pathway of podocytes. These findings offer a strategy to therapeutically interfere with the enhanced podocyte metabolism in various progressive kidney diseases, such as diabetic nephropathy or focal segmental glomerulosclerosis (FSGS).


Assuntos
Glicólise , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Podócitos/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Dinaminas/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Podócitos/ultraestrutura
19.
Genetics ; 172(4): 2695-8, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16489227

RESUMO

In a sperm-transmitted mtDNA of Mytilus galloprovincialis we found an insertion that is not present in the typical genome and whose origin can be explained by a sequence of three events: a tandem duplication, a nonhomologous recombination, and a deletion. Unless such events are extremely rare in this species, the identical gene arrangement of the two gender-specific genomes should imply strong selection for same gene order and size.


Assuntos
Genoma , Mytilus/genética , Animais , Sequência de Bases , DNA Mitocondrial/metabolismo , Feminino , Deleção de Genes , Duplicação Gênica , Genes Mitocondriais , Masculino , Dados de Sequência Molecular , Recombinação Genética , Fatores Sexuais , Espermatozoides/metabolismo
20.
J Mol Evol ; 65(2): 124-36, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17632681

RESUMO

Several studies have shown that in vertebrate mtDNAs the nucleotide content at fourfold degenerate sites is well correlated with the site's time of exposure to the single-strand state, as predicted from the asymmetrical model of mtDNA replication. Here we examine whether the same explanation may hold for the regional variation in nucleotide content in the maternal and paternal mtDNAs of the mussel Mytilus galloprovincialis. The origin of replication of the heavy strand (O(H)) of these genomes has been previously established. A systematic search of the two genomes for sequences that are likely to act as the origin of replication of the light strand (O(L)) suggested that the most probable site lies within the ND3 gene. By adopting this O(L) position we calculated times of exposure for 0(FD) (nondegenerate), 2(FD) (twofold degenerate), and 4(FD) (fourfold degenerate) sites of the protein-coding part of the genome and for the rRNA, tRNA and noncoding parts. The presence of thymine and absence of guanine at 4(FD) sites was highly correlated with the presumed time of exposure. Such an effect was not found for the 2(FD) sites, the rRNA, the tRNA, or the noncoding parts. There was a trend for a small increase in cytosine at 0(FD) sites with exposure time, which is explicable as the result of biased usage of 4(FD) codons. The same analysis was applied to a recently sequenced mitochondrial genome of Mytilus trossulus and produced similar results. These results are consistent with the asymmetrical model of replication and suggest that guanine oxidation due to single-strand exposure is the main cause of regional variation of nucleotide content in Mytilus mitochondrial genomes.


Assuntos
DNA Mitocondrial/genética , Mytilus/genética , Animais , Sequência de Bases , Códon/genética , DNA Mitocondrial/química , Herança Extracromossômica/genética , Feminino , Modelos Lineares , Masculino , Proteínas Mitocondriais/genética , Conformação de Ácido Nucleico , RNA Ribossômico/genética , RNA de Transferência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA