Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370083

RESUMO

SUMMARY: The development of new vaccines and antibody therapeutics typically takes several years and requires over $1bn in investment. Accurate knowledge of the paratope (antibody binding site) can speed up and reduce the cost of this process by improving our understanding of antibody-antigen binding. We present Paragraph, a structure-based paratope prediction tool that outperforms current state-of-the-art tools using simpler feature vectors and no antigen information. AVAILABILITY AND IMPLEMENTATION: Source code is freely available at www.github.com/oxpig/Paragraph. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Anticorpos , Redes Neurais de Computação , Sítios de Ligação de Anticorpos , Software , Antígenos
2.
Mol Biol Evol ; 36(9): 2086-2103, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31114882

RESUMO

Few models of sequence evolution incorporate parameters describing protein structure, despite its high conservation, essential functional role and increasing availability. We present a structurally aware empirical substitution model for amino acid sequence evolution in which proteins are expressed using an expanded alphabet that relays both amino acid identity and structural information. Each character specifies an amino acid as well as information about the rotamer configuration of its side-chain: the discrete geometric pattern of permitted side-chain atomic positions, as defined by the dihedral angles between covalently linked atoms. By assigning rotamer states in 251,194 protein structures and identifying 4,508,390 substitutions between closely related sequences, we generate a 55-state "Dayhoff-like" model that shows that the evolutionary properties of amino acids depend strongly upon side-chain geometry. The model performs as well as or better than traditional 20-state models for divergence time estimation, tree inference, and ancestral state reconstruction. We conclude that not only is rotamer configuration a valuable source of information for phylogenetic studies, but that modeling the concomitant evolution of sequence and structure may have important implications for understanding protein folding and function.


Assuntos
Evolução Molecular , Modelos Biológicos , Conformação Proteica , Substituição de Aminoácidos , Cadeias de Markov
3.
Bioinformatics ; 35(3): 462-469, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30020414

RESUMO

Motivation: Understanding the relationship between the sequence, structure, binding energy, binding kinetics and binding thermodynamics of protein-protein interactions is crucial to understanding cellular signaling, the assembly and regulation of molecular complexes, the mechanisms through which mutations lead to disease, and protein engineering. Results: We present SKEMPI 2.0, a major update to our database of binding free energy changes upon mutation for structurally resolved protein-protein interactions. This version now contains manually curated binding data for 7085 mutations, an increase of 133%, including changes in kinetics for 1844 mutations, enthalpy and entropy changes for 443 mutations, and 440 mutations, which abolish detectable binding. Availability and implementation: The database is available as supplementary data and at https://life.bsc.es/pid/skempi2/. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Dados de Proteínas , Mutação , Ligação Proteica , Cinética , Termodinâmica
4.
Bioinformatics ; 33(12): 1806-1813, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28200016

RESUMO

MOTIVATION: In order to function, proteins frequently bind to one another and form 3D assemblies. Knowledge of the atomic details of these structures helps our understanding of how proteins work together, how mutations can lead to disease, and facilitates the designing of drugs which prevent or mimic the interaction. RESULTS: Atomic modeling of protein-protein interactions requires the selection of near-native structures from a set of docked poses based on their calculable properties. By considering this as an information retrieval problem, we have adapted methods developed for Internet search ranking and electoral voting into IRaPPA, a pipeline integrating biophysical properties. The approach enhances the identification of near-native structures when applied to four docking methods, resulting in a near-native appearing in the top 10 solutions for up to 50% of complexes benchmarked, and up to 70% in the top 100. AVAILABILITY AND IMPLEMENTATION: IRaPPA has been implemented in the SwarmDock server ( http://bmm.crick.ac.uk/∼SwarmDock/ ), pyDock server ( http://life.bsc.es/pid/pydockrescoring/ ) and ZDOCK server ( http://zdock.umassmed.edu/ ), with code available on request. CONTACT: moal@ebi.ac.uk. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Armazenamento e Recuperação da Informação/métodos , Simulação de Acoplamento Molecular , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Software , Internet
5.
Proteins ; 85(7): 1287-1297, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28342242

RESUMO

Protein-protein interactions play fundamental roles in biological processes including signaling, metabolism, and trafficking. While the structure of a protein complex reveals crucial details about the interaction, it is often difficult to acquire this information experimentally. As the number of interactions discovered increases faster than they can be characterized, protein-protein docking calculations may be able to reduce this disparity by providing models of the interacting proteins. Rigid-body docking is a widely used docking approach, and is often capable of generating a pool of models within which a near-native structure can be found. These models need to be scored in order to select the acceptable ones from the set of poses. Recently, more than 100 scoring functions from the CCharPPI server were evaluated for this task using decoy structures generated with SwarmDock. Here, we extend this analysis to identify the predictive success rates of the scoring functions on decoys from three rigid-body docking programs, ZDOCK, FTDock, and SDOCK, allowing us to assess the transferability of the functions. We also apply set-theoretic measure to test whether the scoring functions are capable of identifying near-native poses within different subsets of the benchmark. This information can provide guides for the use of the most efficient scoring function for each docking method, as well as instruct future scoring functions development efforts. Proteins 2017; 85:1287-1297. © 2017 Wiley Periodicals, Inc.


Assuntos
Modelos Estatísticos , Simulação de Acoplamento Molecular/estatística & dados numéricos , Proteínas/química , Projetos de Pesquisa , Benchmarking , Internet , Mapeamento de Interação de Proteínas , Software
6.
Proteins ; 85(3): 487-496, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27701776

RESUMO

The sixth CAPRI edition included new modeling challenges, such as the prediction of protein-peptide complexes, and the modeling of homo-oligomers and domain-domain interactions as part of the first joint CASP-CAPRI experiment. Other non-standard targets included the prediction of interfacial water positions and the modeling of the interactions between proteins and nucleic acids. We have participated in all proposed targets of this CAPRI edition both as predictors and as scorers, with new protocols to efficiently use our docking and scoring scheme pyDock in a large variety of scenarios. In addition, we have participated for the first time in the servers section, with our recently developed webserver, pyDockWeb. Excluding the CASP-CAPRI cases, we submitted acceptable models (or better) for 7 out of the 18 evaluated targets as predictors, 4 out of the 11 targets as scorers, and 6 out of the 18 targets as servers. The overall success rates were below those in past CAPRI editions. This shows the challenging nature of this last edition, with many difficult targets for which no participant submitted a single acceptable model. Interestingly, we submitted acceptable models for 83% of the evaluated protein-peptide targets. As for the 25 cases of the CASP-CAPRI experiment, in which we used a larger variety of modeling techniques (template-based, symmetry restraints, literature information, etc.), we submitted acceptable models for 56% of the targets. In summary, this CAPRI edition showed that pyDock scheme can be efficiently adapted to the increasing variety of problems that the protein interactions field is currently facing. Proteins 2017; 85:487-496. © 2016 Wiley Periodicals, Inc.


Assuntos
Algoritmos , Biologia Computacional/métodos , Simulação de Acoplamento Molecular/métodos , Peptídeos/química , Proteínas/química , Software , Sequência de Aminoácidos , Benchmarking , Sítios de Ligação , Cristalografia por Raios X , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Multimerização Proteica , Projetos de Pesquisa , Homologia Estrutural de Proteína , Termodinâmica , Água/química
7.
Proteins ; 85(3): 528-543, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27935158

RESUMO

Reliable identification of near-native poses of docked protein-protein complexes is still an unsolved problem. The intrinsic heterogeneity of protein-protein interactions is challenging for traditional biophysical or knowledge based potentials and the identification of many false positive binding sites is not unusual. Often, ranking protocols are based on initial clustering of docked poses followed by the application of an energy function to rank each cluster according to its lowest energy member. Here, we present an approach of cluster ranking based not only on one molecular descriptor (e.g., an energy function) but also employing a large number of descriptors that are integrated in a machine learning model, whereby, an extremely randomized tree classifier based on 109 molecular descriptors is trained. The protocol is based on first locally enriching clusters with additional poses, the clusters are then characterized using features describing the distribution of molecular descriptors within the cluster, which are combined into a pairwise cluster comparison model to discriminate near-native from incorrect clusters. The results show that our approach is able to identify clusters containing near-native protein-protein complexes. In addition, we present an analysis of the descriptors with respect to their power to discriminate near native from incorrect clusters and how data transformations and recursive feature elimination can improve the ranking performance. Proteins 2017; 85:528-543. © 2016 Wiley Periodicals, Inc.


Assuntos
Biologia Computacional/métodos , Aprendizado de Máquina , Simulação de Acoplamento Molecular/métodos , Proteínas/química , Software , Benchmarking , Sítios de Ligação , Análise por Conglomerados , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Projetos de Pesquisa , Homologia Estrutural de Proteína , Termodinâmica
8.
Mol Microbiol ; 95(1): 17-30, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25354037

RESUMO

σ(54)-dependent transcription controls a wide range of stress-related genes in bacteria and is tightly regulated. In contrast to σ(70), the σ(54)-RNA polymerase holoenzyme forms a stable closed complex at the promoter site that rarely isomerises into transcriptionally competent open complexes. The conversion into open complexes requires the ATPase activity of activator proteins that bind remotely upstream of the transcriptional start site. These activators belong to the large AAA protein family and the majority of them consist of an N-terminal regulatory domain, a central AAA domain and a C-terminal DNA binding domain. Here we use a functional variant of the NorR activator, a dedicated NO sensor, to provide the first structural and functional characterisation of a full length AAA activator in complex with its enhancer DNA. Our data suggest an inter-dependent and synergistic relationship of all three functional domains and provide an explanation for the dependence of NorR on enhancer DNA. Our results show that NorR readily assembles into higher order oligomers upon enhancer binding, independent of activating signals. Upon inducing signals, the N-terminal regulatory domain relocates to the periphery of the AAA ring. Together our data provide an assembly and activation mechanism for NorR.


Assuntos
Bactérias/metabolismo , RNA Polimerase Sigma 54/genética , Transativadores/química , Transativadores/genética , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo , RNA Polimerase Sigma 54/metabolismo , Sequências Reguladoras de Ácido Nucleico , Transativadores/metabolismo
9.
Bioinformatics ; 31(1): 123-5, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25183488

RESUMO

SUMMARY: The atomic structures of protein-protein interactions are central to understanding their role in biological systems, and a wide variety of biophysical functions and potentials have been developed for their characterization and the construction of predictive models. These tools are scattered across a multitude of stand-alone programs, and are often available only as model parameters requiring reimplementation. This acts as a significant barrier to their widespread adoption. CCharPPI integrates many of these tools into a single web server. It calculates up to 108 parameters, including models of electrostatics, desolvation and hydrogen bonding, as well as interface packing and complementarity scores, empirical potentials at various resolutions, docking potentials and composite scoring functions. AVAILABILITY AND IMPLEMENTATION: The server does not require registration by the user and is freely available for non-commercial academic use at http://life.bsc.es/pid/ccharppi.


Assuntos
Internet , Simulação de Acoplamento Molecular/métodos , Complexos Multiproteicos/química , Mapeamento de Interação de Proteínas , Software , Humanos , Ligação de Hidrogênio , Eletricidade Estática
10.
Proteins ; 83(4): 640-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25586563

RESUMO

Mutations at protein-protein recognition sites alter binding strength by altering the chemical nature of the interacting surfaces. We present a simple surface energy model, parameterized with empirical ΔΔG values, yielding mean energies of -48 cal mol(-1) Å(-2) for interactions between hydrophobic surfaces, -51 to -80 cal mol(-1) Å(-2) for surfaces of complementary charge, and 66-83 cal mol(-1) Å(-2) for electrostatically repelling surfaces, relative to the aqueous phase. This places the mean energy of hydrophobic surface burial at -24 cal mol(-1) Å(-2) . Despite neglecting configurational entropy and intramolecular changes, the model correlates with empirical binding free energies of a functionally diverse set of rigid-body interactions (r = 0.66). When used to rerank docking poses, it can place near-native solutions in the top 10 for 37% of the complexes evaluated, and 82% in the top 100. The method shows that hydrophobic burial is the driving force for protein association, accounting for 50-95% of the cohesive energy. The model is available open-source from http://life.bsc.es/pid/web/surface_energy/ and via the CCharpPPI web server http://life.bsc.es/pid/ccharppi/.


Assuntos
Mutação/fisiologia , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Eletricidade Estática , Termodinâmica
11.
Proteins ; 82(4): 620-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24155158

RESUMO

We report the first assessment of blind predictions of water positions at protein-protein interfaces, performed as part of the critical assessment of predicted interactions (CAPRI) community-wide experiment. Groups submitting docking predictions for the complex of the DNase domain of colicin E2 and Im2 immunity protein (CAPRI Target 47), were invited to predict the positions of interfacial water molecules using the method of their choice. The predictions-20 groups submitted a total of 195 models-were assessed by measuring the recall fraction of water-mediated protein contacts. Of the 176 high- or medium-quality docking models-a very good docking performance per se-only 44% had a recall fraction above 0.3, and a mere 6% above 0.5. The actual water positions were in general predicted to an accuracy level no better than 1.5 Å, and even in good models about half of the contacts represented false positives. This notwithstanding, three hotspot interface water positions were quite well predicted, and so was one of the water positions that is believed to stabilize the loop that confers specificity in these complexes. Overall the best interface water predictions was achieved by groups that also produced high-quality docking models, indicating that accurate modelling of the protein portion is a determinant factor. The use of established molecular mechanics force fields, coupled to sampling and optimization procedures also seemed to confer an advantage. Insights gained from this analysis should help improve the prediction of protein-water interactions and their role in stabilizing protein complexes.


Assuntos
Colicinas/química , Mapeamento de Interação de Proteínas , Água/química , Algoritmos , Biologia Computacional , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica
12.
Bioinformatics ; 29(6): 807-9, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23343604

RESUMO

Protein-protein interactions are central to almost all biological functions, and the atomic details of such interactions can yield insights into the mechanisms that underlie these functions. We present a web server that wraps and extends the SwarmDock flexible protein-protein docking algorithm. After uploading PDB files of the binding partners, the server generates low energy conformations and returns a ranked list of clustered docking poses and their corresponding structures. The user can perform full global docking, or focus on particular residues that are implicated in binding. The server is validated in the CAPRI blind docking experiment, against the most current docking benchmark, and against the ClusPro docking server, the highest performing server currently available.


Assuntos
Simulação de Acoplamento Molecular/métodos , Complexos Multiproteicos/química , Mapeamento de Interação de Proteínas/métodos , Software , Algoritmos , Análise por Conglomerados , Internet , Conformação Proteica
13.
PLoS Comput Biol ; 9(9): e1003216, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039569

RESUMO

Predicting the effects of mutations on the kinetic rate constants of protein-protein interactions is central to both the modeling of complex diseases and the design of effective peptide drug inhibitors. However, while most studies have concentrated on the determination of association rate constants, dissociation rates have received less attention. In this work we take a novel approach by relating the changes in dissociation rates upon mutation to the energetics and architecture of hotspots and hotregions, by performing alanine scans pre- and post-mutation. From these scans, we design a set of descriptors that capture the change in hotspot energy and distribution. The method is benchmarked on 713 kinetically characterized mutations from the SKEMPI database. Our investigations show that, with the use of hotspot descriptors, energies from single-point alanine mutations may be used for the estimation of off-rate mutations to any residue type and also multi-point mutations. A number of machine learning models are built from a combination of molecular and hotspot descriptors, with the best models achieving a Pearson's Correlation Coefficient of 0.79 with experimental off-rates and a Matthew's Correlation Coefficient of 0.6 in the detection of rare stabilizing mutations. Using specialized feature selection models we identify descriptors that are highly specific and, conversely, broadly important to predicting the effects of different classes of mutations, interface regions and complexes. Our results also indicate that the distribution of the critical stability regions across protein-protein interfaces is a function of complex size more strongly than interface area. In addition, mutations at the rim are critical for the stability of small complexes, but consistently harder to characterize. The relationship between hotregion size and the dissociation rate is also investigated and, using hotspot descriptors which model cooperative effects within hotregions, we show how the contribution of hotregions of different sizes, changes under different cooperative effects.


Assuntos
Mutação , Proteínas/química , Alanina/química , Inteligência Artificial , Cinética , Proteínas/genética
14.
BMC Bioinformatics ; 14: 286, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24079540

RESUMO

BACKGROUND: Protein-protein docking, which aims to predict the structure of a protein-protein complex from its unbound components, remains an unresolved challenge in structural bioinformatics. An important step is the ranking of docked poses using a scoring function, for which many methods have been developed. There is a need to explore the differences and commonalities of these methods with each other, as well as with functions developed in the fields of molecular dynamics and homology modelling. RESULTS: We present an evaluation of 115 scoring functions on an unbound docking decoy benchmark covering 118 complexes for which a near-native solution can be found, yielding top 10 success rates of up to 58%. Hierarchical clustering is performed, so as to group together functions which identify near-natives in similar subsets of complexes. Three set theoretic approaches are used to identify pairs of scoring functions capable of correctly scoring different complexes. This shows that functions in different clusters capture different aspects of binding and are likely to work together synergistically. CONCLUSIONS: All functions designed specifically for docking perform well, indicating that functions are transferable between sampling methods. We also identify promising methods from the field of homology modelling. Further, differential success rates by docking difficulty and solution quality suggest a need for flexibility-dependent scoring. Investigating pairs of scoring functions, the set theoretic measures identify known scoring strategies as well as a number of novel approaches, indicating promising augmentations of traditional scoring methods. Such augmentation and parameter combination strategies are discussed in the context of the learning-to-rank paradigm.


Assuntos
Biologia Computacional/métodos , Simulação de Acoplamento Molecular/métodos , Ligação Proteica , Proteínas , Análise por Conglomerados , Ligantes , Proteínas/química , Proteínas/metabolismo
15.
Proteins ; 81(12): 2143-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23900714

RESUMO

Within the crowded, seemingly chaotic environment of the cell, proteins are still able to find their binding partners. This is achieved via an ensemble of trajectories, which funnel them towards their functional binding sites, the binding funnel. Here, we characterize funnel-like energy structures on the global energy landscape using time-homogeneous finite state Markov chain models. These models are based on the idea that transitions can occur between structurally similar docking solutions, with transition probabilities determined by their difference in binding energy. Funnel-like energy structures are those containing solutions with very high equilibrium populations. Although these are found surrounding both near-native and false positive binding sites, we show that the removal of nonfunnel-like energy structures, by filtering away solutions with low maximum equilibrium population, can significantly improve the ranking of docked poses.


Assuntos
Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Proteínas/química , Sítios de Ligação , Simulação por Computador , Cadeias de Markov , Ligação Proteica , Software , Soluções/química , Termodinâmica
16.
Proteins ; 81(12): 2192-200, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23934865

RESUMO

In addition to protein-protein docking, this CAPRI edition included new challenges, like protein-water and protein-sugar interactions, or the prediction of binding affinities and ΔΔG changes upon mutation. Regarding the standard protein-protein docking cases, our approach, mostly based on the pyDock scheme, submitted correct models as predictors and as scorers for 67% and 57% of the evaluated targets, respectively. In this edition, available information on known interface residues hardly made any difference for our predictions. In one of the targets, the inclusion of available experimental small-angle X-ray scattering (SAXS) data using our pyDockSAXS approach slightly improved the predictions. In addition to the standard protein-protein docking assessment, new challenges were proposed. One of the new problems was predicting the position of the interface water molecules, for which we submitted models with 20% and 43% of the water-mediated native contacts predicted as predictors and scorers, respectively. Another new problem was the prediction of protein-carbohydrate binding, where our submitted model was very close to being acceptable. A set of targets were related to the prediction of binding affinities, in which our pyDock scheme was able to discriminate between natural and designed complexes with area under the curve = 83%. It was also proposed to estimate the effect of point mutations on binding affinity. Our approach, based on machine learning methods, showed high rates of correctly classified mutations for all cases. The overall results were highly rewarding, and show that the field is ready to move forward and face new interesting challenges in interactomics.


Assuntos
Carboidratos/química , Simulação de Acoplamento Molecular , Proteínas/química , Água/química , Biologia Computacional , Mutação , Ligação Proteica , Conformação Proteica , Espalhamento a Baixo Ângulo , Software , Difração de Raios X
17.
Proteins ; 81(11): 1980-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23843247

RESUMO

Community-wide blind prediction experiments such as CAPRI and CASP provide an objective measure of the current state of predictive methodology. Here we describe a community-wide assessment of methods to predict the effects of mutations on protein-protein interactions. Twenty-two groups predicted the effects of comprehensive saturation mutagenesis for two designed influenza hemagglutinin binders and the results were compared with experimental yeast display enrichment data obtained using deep sequencing. The most successful methods explicitly considered the effects of mutation on monomer stability in addition to binding affinity, carried out explicit side-chain sampling and backbone relaxation, evaluated packing, electrostatic, and solvation effects, and correctly identified around a third of the beneficial mutations. Much room for improvement remains for even the best techniques, and large-scale fitness landscapes should continue to provide an excellent test bed for continued evaluation of both existing and new prediction methodologies.


Assuntos
Bases de Dados de Proteínas , Mapeamento de Interação de Proteínas , Algoritmos , Mutação , Ligação Proteica
18.
Bioinformatics ; 28(20): 2600-7, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22859501

RESUMO

MOTIVATION: Empirical models for the prediction of how changes in sequence alter protein-protein binding kinetics and thermodynamics can garner insights into many aspects of molecular biology. However, such models require empirical training data and proper validation before they can be widely applied. Previous databases contained few stabilizing mutations and no discussion of their inherent biases or how this impacts model construction or validation. RESULTS: We present SKEMPI, a database of 3047 binding free energy changes upon mutation assembled from the scientific literature, for protein-protein heterodimeric complexes with experimentally determined structures. This represents over four times more data than previously collected. Changes in 713 association and dissociation rates and 127 enthalpies and entropies were also recorded. The existence of biases towards specific mutations, residues, interfaces, proteins and protein families is discussed in the context of how the data can be used to construct predictive models. Finally, a cross-validation scheme is presented which is capable of estimating the efficacy of derived models on future data in which these biases are not present. AVAILABILITY: The database is available online at http://life.bsc.es/pid/mutation_database/.


Assuntos
Bases de Dados de Proteínas , Proteínas Mutantes/química , Proteínas Mutantes/genética , Cinética , Modelos Químicos , Proteínas Mutantes/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Termodinâmica
19.
PLoS Comput Biol ; 8(1): e1002351, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22253587

RESUMO

The prediction of protein-protein kinetic rate constants provides a fundamental test of our understanding of molecular recognition, and will play an important role in the modeling of complex biological systems. In this paper, a feature selection and regression algorithm is applied to mine a large set of molecular descriptors and construct simple models for association and dissociation rate constants using empirical data. Using separate test data for validation, the predicted rate constants can be combined to calculate binding affinity with accuracy matching that of state of the art empirical free energy functions. The models show that the rate of association is linearly related to the proportion of unbound proteins in the bound conformational ensemble relative to the unbound conformational ensemble, indicating that the binding partners must adopt a geometry near to that of the bound prior to binding. Mirroring the conformational selection and population shift mechanism of protein binding, the models provide a strong separate line of evidence for the preponderance of this mechanism in protein-protein binding, complementing structural and theoretical studies.


Assuntos
Algoritmos , Proteínas/química , Sítios de Ligação , Cinética , Modelos Moleculares , Conformação Proteica , Proteínas/metabolismo , Termodinâmica
20.
Sci Rep ; 13(1): 11612, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463925

RESUMO

Antibodies with similar amino acid sequences, especially across their complementarity-determining regions, often share properties. Finding that an antibody of interest has a similar sequence to naturally expressed antibodies in healthy or diseased repertoires is a powerful approach for the prediction of antibody properties, such as immunogenicity or antigen specificity. However, as the number of available antibody sequences is now in the billions and continuing to grow, repertoire mining for similar sequences has become increasingly computationally expensive. Existing approaches are limited by either being low-throughput, non-exhaustive, not antibody specific, or only searching against entire chain sequences. Therefore, there is a need for a specialized tool, optimized for a rapid and exhaustive search of any antibody region against all known antibodies, to better utilize the full breadth of available repertoire sequences. We introduce Known Antibody Search (KA-Search), a tool that allows for the rapid search of billions of antibody variable domains by amino acid sequence identity across either the variable domain, the complementarity-determining regions, or a user defined antibody region. We show KA-Search in operation on the [Formula: see text]2.4 billion antibody sequences available in the OAS database. KA-Search can be used to find the most similar sequences from OAS within 30 minutes and a representative subset of 10 million sequences in less than 9 seconds. We give examples of how KA-Search can be used to obtain new insights about an antibody of interest. KA-Search is freely available at https://github.com/oxpig/kasearch .


Assuntos
Anticorpos , Regiões Determinantes de Complementaridade , Regiões Determinantes de Complementaridade/química , Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA