Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Med ; 146: 105637, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35617727

RESUMO

BACKGROUND: Ejection fraction (EF) is a key parameter for assessing cardiovascular functions in cardiac ultrasound, but its manual assessment is time-consuming and subject to high inter and intra-observer variability. Deep learning-based methods have the potential to perform accurate fully automatic EF predictions but suffer from a lack of explainability and interpretability. This study proposes a fully automatic method to reliably and explicitly evaluate the biplane left ventricular EF on 2D echocardiography following the recommended modified Simpson's rule. METHODS: A deep learning model was trained on apical 4 and 2-chamber echocardiography to segment the left ventricle and locate the mitral valve. Predicted segmentations are then validated with a statistical shape model, which detects potential failures that could impact the EF evaluation. Finally, the end-diastolic and end-systolic frames are identified based on the remaining LV segmentations' areas and EF is estimated on all available cardiac cycles. RESULTS: Our approach was trained on a dataset of 783 patients. Its performances were evaluated on an internal and external dataset of respectively 200 and 450 patients. On the internal dataset, EF assessment achieved a mean absolute error of 6.10% and a bias of 1.56 ± 7.58% using multiple cardiac cycles. The approach evaluated EF with a mean absolute error of 5.39% and a bias of -0.74 ± 7.12% on the external dataset. CONCLUSION: Following the recommended guidelines, we proposed an end-to-end fully automatic approach that achieves state-of-the-art performance in biplane EF evaluation while giving explicit details to clinicians.


Assuntos
Aprendizado Profundo , Ecocardiografia/métodos , Ventrículos do Coração/diagnóstico por imagem , Humanos , Reprodutibilidade dos Testes , Volume Sistólico , Função Ventricular Esquerda
2.
J Med Imaging (Bellingham) ; 6(4): 044001, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31592439

RESUMO

Automatic and reliable stroke lesion segmentation from diffusion magnetic resonance imaging (MRI) is critical for patient care. Methods using neural networks have been developed, but the rate of false positives limits their use in clinical practice. A training strategy applied to three-dimensional deconvolutional neural networks for stroke lesion segmentation on diffusion MRI was proposed. Infarcts were segmented by experts on diffusion MRI for 929 patients. We divided each database as follows: 60% for a training set, 20% for validation, and 20% for testing. Our hypothesis was a two-phase hybrid learning scheme, in which the network was first trained with whole MRI (regular phase) and then, in a second phase (hybrid phase), alternately with whole MRI and patches. Patches were actively selected from the discrepancy between expert and model segmentation at the beginning of each batch. On the test population, the performances after the regular and hybrid phases were compared. A statistically significant Dice improvement with hybrid training compared with regular training was demonstrated ( p < 0.01 ). The mean Dice reached 0.711 ± 0.199 . False positives were reduced by almost 30% with hybrid training ( p < 0.01 ). Our hybrid training strategy empowered deep neural networks for more accurate infarct segmentations on diffusion MRI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA