RESUMO
PI3Kγ is a critical immune signaling enzyme activated downstream of diverse cell surface molecules, including Ras, PKCß activated by the IgE receptor, and Gßγ subunits released from activated GPCRs. PI3Kγ can form two distinct complexes, with the p110γ catalytic subunit binding to either a p101 or p84 regulatory subunit, with these complexes being differentially activated by upstream stimuli. Here, using a combination of cryo electron microscopy, HDX-MS, and biochemical assays, we have identified novel roles of the helical domain of p110γ in regulating lipid kinase activity of distinct PI3Kγ complexes. We defined the molecular basis for how an allosteric inhibitory nanobody potently inhibits kinase activity through rigidifying the helical domain and regulatory motif of the kinase domain. The nanobody did not block either p110γ membrane recruitment or Ras/Gßγ binding, but instead decreased ATP turnover. We also identified that p110γ can be activated by dual PKCß helical domain phosphorylation leading to partial unfolding of an N-terminal region of the helical domain. PKCß phosphorylation is selective for p110γ-p84 compared to p110γ-p101, driven by differential dynamics of the helical domain of these different complexes. Nanobody binding prevented PKCß-mediated phosphorylation. Overall, this work shows an unexpected allosteric regulatory role of the helical domain of p110γ that is distinct between p110γ-p84 and p110γ-p101 and reveals how this can be modulated by either phosphorylation or allosteric inhibitory binding partners. This opens possibilities of future allosteric inhibitor development for therapeutic intervention.
Assuntos
Metabolismo dos Lipídeos , Transdução de Sinais , Regulação Alostérica , Transdução de Sinais/fisiologia , Fosforilação , Membrana CelularRESUMO
PI3Kγ is a critical immune signaling enzyme activated downstream of diverse cell surface molecules, including Ras, PKCß activated by the IgE receptor, and Gßγ subunits released from activated GPCRs. PI3Kγ can form two distinct complexes, with the p110γ catalytic subunit binding to either a p101 or p84 regulatory subunit, with these complexes being differentially activated by upstream stimuli. Here using a combination of cryo electron microscopy, HDX-MS, and biochemical assays we have identified novel roles of the helical domain of p110γ in regulating lipid kinase activity of distinct PI3Kγ complexes. We defined the molecular basis for how an allosteric inhibitory nanobody potently inhibits kinase activity through rigidifying the helical domain and regulatory motif of the kinase domain. The nanobody did not block either p110γ membrane recruitment or Ras/Gßγ binding, but instead decreased ATP turnover. We also identified that p110γ can be activated by dual PKCß helical domain phosphorylation leading to partial unfolding of an N-terminal region of the helical domain. PKCß phosphorylation is selective for p110γ-p84 compared to p110γ-p101, driven by differential dynamics of the helical domain of these different complexes. Nanobody binding prevented PKCß mediated phosphorylation. Overall, this works shows an unexpected allosteric regulatory role of the helical domain of p110γ that is distinct between p110γ-p84 and p110γ-p101 and reveals how this can be modulated by either phosphorylation or allosteric inhibitory binding partners. This opens possibilities of future allosteric inhibitor development for therapeutic intervention.
RESUMO
Eosinophils are present in the thymus of mammals, yet their function at this site during homeostatic development is unknown. We used flow cytometry to determine the abundance and phenotype of eosinophils (here defined as SSchigh SiglecF+ CD11b+ CD45+ cells) in the thymus of mice during the neonatal period, the later postnatal period, and into adulthood. We show that both the total number of thymic eosinophils and their frequency among leukocytes increase over the first 2 wk of life and that their accumulation in the thymus is dependent on the presence of an intact bacterial microbiota. We report that thymic eosinophils express the interleukin-5 receptor (CD125), CD80, and IDO, and that subsets of thymic eosinophils express CD11c and major histocompatibility complex II (MHCII). We found that the frequency of MHCII-expressing thymic eosinophils increases over the first 2 wk of life, and that during this early-life period the highest frequency of MHCII-expressing thymic eosinophils is located in the inner medullary region. These data suggest a temporal and microbiota-dependent regulation of eosinophil abundance and functional capabilities in the thymus.
Assuntos
Eosinófilos , Timo , Camundongos , Animais , Citometria de Fluxo , Complexo Principal de Histocompatibilidade , MamíferosRESUMO
Lipid droplets (LDs) are dynamic organelles that contain an oil core mainly composed of triglycerides (TAG) that is surrounded by a phospholipid monolayer and LD-associated proteins called perilipins (PLINs). During LD biogenesis, perilipin 3 (PLIN3) is recruited to nascent LDs as they emerge from the endoplasmic reticulum. Here, we analyze how lipid composition affects PLIN3 recruitment to membrane bilayers and LDs, and the structural changes that occur upon membrane binding. We find that the TAG precursors phosphatidic acid and diacylglycerol (DAG) recruit PLIN3 to membrane bilayers and define an expanded Perilipin-ADRP-Tip47 (PAT) domain that preferentially binds DAG-enriched membranes. Membrane binding induces a disorder to order transition of alpha helices within the PAT domain and 11-mer repeats, with intramolecular distance measurements consistent with the expanded PAT domain adopting a folded but dynamic structure upon membrane binding. In cells, PLIN3 is recruited to DAG-enriched ER membranes, and this requires both the PAT domain and 11-mer repeats. This provides molecular details of PLIN3 recruitment to nascent LDs and identifies a function of the PAT domain of PLIN3 in DAG binding.
Assuntos
Diglicerídeos , Perilipina-3 , Diglicerídeos/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Perilipina-1/metabolismo , Perilipina-3/metabolismo , Triglicerídeos/metabolismoRESUMO
Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.
Assuntos
Ceramidas , Esfingolipídeos , Humanos , Ceramidas/metabolismo , Homeostase , Mutação , Esfingolipídeos/genética , Esfingolipídeos/metabolismoRESUMO
Trimer Independent of NuA4 involved in Transcription Interactions with Nucleosomes (TINTIN) is an integral module of the essential yeast lysine acetyltransferase complex NuA4 that plays key roles in transcription regulation and DNA repair. Composed of Eaf3, Eaf5, and Eaf7, TINTIN mediates targeting of NuA4 to chromatin through the chromodomain-containing subunit Eaf3 that is shared with the Rpd3S histone deacetylase complex. How Eaf3 mediates chromatin interaction in the context of TINTIN and how is it different from what has been observed in Rpd3S is unclear. Here, we reconstituted recombinant TINTIN and its subassemblies and characterized their biochemical and structural properties. Our coimmunoprecipitation, AlphaFold2 modeling, and hydrogen deuterium exchange mass spectrometry (HDX-MS) analyses revealed that the Eaf3 MRG domain contacts Eaf7 and this binding induces conformational changes throughout Eaf3. Nucleosome-binding assays showed that Eaf3 and TINTIN interact non-specifically with the DNA on nucleosomes. Furthermore, integration into TINTIN enhances the affinity of Eaf3 toward nucleosomes and this improvement is a result of allosteric activation of the Eaf3 chromodomain. Negative stain electron microscopy (EM) analysis revealed that TINTIN binds to the edge of nucleosomes with increased specificity in the presence of H3K36me3. Collectively, our work provides insights into the dynamics of TINTIN and the mechanism by which its interactions with chromatin are regulated.
Assuntos
Nucleossomos , Proteínas de Saccharomyces cerevisiae , Nucleossomos/metabolismo , Regulação Alostérica , Proteínas de Saccharomyces cerevisiae/metabolismo , Histonas/metabolismo , Acetiltransferases/química , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Histona Acetiltransferases/metabolismoRESUMO
CNNM/CorB proteins are a broadly conserved family of integral membrane proteins with close to 90,000 protein sequences known. They are associated with Mg2+ transport but it is not known if they mediate transport themselves or regulate other transporters. Here, we determine the crystal structure of an archaeal CorB protein in two conformations (apo and Mg2+-ATP bound). The transmembrane DUF21 domain exists in an inward-facing conformation with a Mg2+ ion coordinated by a conserved π-helix. In the absence of Mg2+-ATP, the CBS-pair domain adopts an elongated dimeric configuration with previously unobserved domain-domain contacts. Hydrogen-deuterium exchange mass spectrometry, analytical ultracentrifugation, and molecular dynamics experiments support a role of the structural rearrangements in mediating Mg2+-ATP sensing. Lastly, we use an in vitro, liposome-based assay to demonstrate direct Mg2+ transport by CorB proteins. These structural and functional insights provide a framework for understanding function of CNNMs in Mg2+ transport and associated diseases.
Assuntos
Proteínas de Transporte de Cátions/metabolismo , Hydrogenophilaceae/metabolismo , Magnésio/metabolismo , Methanomicrobiaceae/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/genética , Cristalografia por Raios X , Medição da Troca de Deutério , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios ProteicosRESUMO
Class I Phosphoinositide 3-kinases (PI3Ks) are master regulators of cellular functions, with the class IB PI3K catalytic subunit (p110γ) playing key roles in immune signalling. p110γ is a key factor in inflammatory diseases and has been identified as a therapeutic target for cancers due to its immunomodulatory role. Using a combined biochemical/biophysical approach, we have revealed insight into regulation of kinase activity, specifically defining how immunodeficiency and oncogenic mutations of R1021 in the C-terminus can inactivate or activate enzyme activity. Screening of inhibitors using HDX-MS revealed that activation loop-binding inhibitors induce allosteric conformational changes that mimic those in the R1021C mutant. Structural analysis of advanced PI3K inhibitors in clinical development revealed novel binding pockets that can be exploited for further therapeutic development. Overall, this work provides unique insights into regulatory mechanisms that control PI3Kγ kinase activity and shows a framework for the design of PI3K isoform and mutant selective inhibitors.
Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/genética , Síndromes de Imunodeficiência/genética , Mutação , Classe Ib de Fosfatidilinositol 3-Quinase/química , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , HumanosRESUMO
Intestinal helminth infection can impair host resistance to co-infection with enteric bacterial pathogens. However, it is not known whether helminth drug-clearance can restore host resistance to bacterial infection. Using a mouse helminth-Salmonella co-infection system, we show that anthelmintic treatment prior to Salmonella challenge is sufficient to restore host resistance to Salmonella. The presence of the small intestine-dwelling helminth Heligmosomoides polygyrus at the point of Salmonella infection supports the initial establishment of Salmonella in the small intestinal lumen. Interestingly, if helminth drug-clearance is delayed until Salmonella has already established in the small intestinal lumen, anthelmintic treatment does not result in complete clearance of Salmonella. This suggests that while the presence of helminths supports initial Salmonella colonization, helminths are dispensable for Salmonella persistence in the host small intestine. These data contribute to the mechanistic understanding of how an ongoing or prior helminth infection can affect pathogenic bacterial colonization and persistence in the mammalian intestine.
Assuntos
Coinfecção/microbiologia , Coinfecção/parasitologia , Resistência à Doença/fisiologia , Helmintíase/complicações , Enteropatias Parasitárias/complicações , Nematospiroides dubius/fisiologia , Salmonella/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal , Intestinos/microbiologia , Intestinos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções por Salmonella/complicações , Salmonella typhiRESUMO
Liver receptor homolog-1 (LRH-1; NR5A2) is a nuclear receptor that regulates a diverse array of biological processes. In contrast to dimeric nuclear receptors, LRH-1 is an obligate monomer and contains a subtype-specific helix at the C terminus of the DNA-binding domain (DBD), termed FTZ-F1. Although detailed structural information is available for individual domains of LRH-1, it is unknown how these domains exist in the intact nuclear receptor. Here, we developed an integrated structural model of human full-length LRH-1 using a combination of HDX-MS, XL-MS, Rosetta computational docking, and SAXS. The model predicts the DBD FTZ-F1 helix directly interacts with ligand binding domain helix 2. We confirmed several other predicted inter-domain interactions via structural and functional analyses. Comparison between the LRH-1/Dax-1 co-crystal structure and the integrated model predicted and confirmed Dax-1 co-repressor to modulate LRH-1 inter-domain dynamics. Together, these data support individual LRH-1 domains interacting to influence receptor structure and function.
Assuntos
Simulação de Dinâmica Molecular , Receptores Citoplasmáticos e Nucleares/química , Sítios de Ligação , DNA/química , DNA/metabolismo , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismoRESUMO
Conflicting data has emerged regarding a role for eosinophils in IgA production, with some reports that eosinophils support both secretory and circulating IgA levels during homeostasis. Previous studies have compared antibody levels between wildtype and eosinophil-deficient mice, but these mice were obtained from different commercial vendors and/or were not littermates. Thus, the possibility remains that extrinsic environmental factors, rather than an intrinsic lack of eosinophils, are responsible for the reports of reduced IgA in eosinophil-deficient mice. Here we used wild-type and eosinophil-deficient (ΔdblGATA) mice that were purchased from a single vendor, subsequently bred in-house and either co-housed as adults, co-reared from birth or raised as littermates. We found no differences in the levels of secretory IgA or in the numbers of small intestinal IgA-producing plasma cells between wild-type and ΔdblGATA mice, demonstrating that under controlled steady-state conditions eosinophils are not essential for the maintenance of secretory IgA in the intestinal tract. While we found that levels of IgM and IgE were significantly elevated in the serum of ΔdblGATA mice compared to co-reared or co-housed wild-type mice, no significant differences in these or other circulating antibody isotypes were identified between genotypes in littermate-controlled experiments. Our results demonstrate that eosinophils are not required to maintain secretory or circulating IgA production and the absence of eosinophils does not impact circulating IgG1, IgG2b, IgM, or IgE levels during homeostasis. These findings emphasize the importance of optimally controlling rearing and housing conditions throughout life between mice of different genotypes.