RESUMO
People with HIV-1 (PWH) on antiretroviral therapy (ART) can maintain undetectable virus levels, but a small pool of infected cells persists. This pool is largely comprised of defective proviruses that may produce HIV-1 proteins but are incapable of making infectious virus, with only a fraction (~10%) of these cells harboring intact viral genomes, some of which produce infectious virus following ex vivo stimulation (i.e. inducible intact proviruses). A majority of the inducible proviruses that persist on ART are formed near the time of therapy initiation. Here we compared proviral DNA (assessed here as 3' half genomes amplified from total cellular DNA) and inducible replication competent viruses in the pool of infected cells that persists during ART to determine if the original infection of these cells occurred at comparable times prior to therapy initiation. Overall, the average percent of proviruses that formed late (i.e. around the time of ART initiation, 60%) did not differ from the average percent of replication competent inducible viruses that formed late (69%), and this was also true for proviral DNA that was hypermutated (57%). Further, there was no evidence that entry into the long-lived infected cell pool was impeded by the ability to use the CXCR4 coreceptor, nor was the formation of long-lived infected cells enhanced during primary infection, when viral loads are exceptionally high. We observed that infection of cells that transitioned to be long-lived was enhanced among people with a lower nadir CD4+ T cell count. Together these data suggest that the timing of infection of cells that become long-lived is impacted more by biological processes associated with immunodeficiency before ART than the replication competency and/or cellular tropism of the infecting virus or the intactness of the provirus. Further research is needed to determine the mechanistic link between immunodeficiency and the timing of infected cells transitioning to the long-lived pool, particularly whether this is due to differences in infected cell clearance, turnover rates and/or homeostatic proliferation before and after ART.
Assuntos
Infecções por HIV , HIV-1 , Humanos , Provírus/genética , HIV-1/genética , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Linfócitos T CD4-Positivos , DNA Viral/genética , DNA Viral/metabolismo , Carga Viral , TropismoRESUMO
Although antiretroviral therapy (ART) is effective at suppressing HIV replication, a viral reservoir persists that can reseed infection if ART is interrupted. Curing HIV will require elimination or containment of this reservoir, but the size of the HIV reservoir is highly variable between individuals. To evaluate the size of the HIV reservoir, several assays have been developed, including PCR-based assays for viral DNA, the intact proviral DNA assay, and the quantitative viral outgrowth assay (QVOA). QVOA is the gold standard assay for measuring inducible replication-competent proviruses, but this assay is technically challenging and time-consuming. To begin progress toward a more rapid and less laborious tool for quantifying cells infected with replication-competent HIV, we developed the Microwell Outgrowth Assay, in which infected CD4 T cells are co-cultured with an HIV-detecting reporter cell line in a polydimethylsiloxane (PDMS)/polystyrene array of nanoliter-sized wells. Transmission of HIV from infected cells to the reporter cell line induces fluorescent reporter protein expression that is detected by automated scanning across the array. Using this approach, we were able to detect HIV-infected cells from ART-naïve people with HIV (PWH) and from PWH on ART with large reservoirs. Furthermore, we demonstrate that infected cells can be recovered from individual rafts and used to analyze the diversity of viral sequences. Although additional development and optimization will be required for quantifying the reservoir in PWH with small latent reservoirs, this assay may be a useful prototype for microwell assays of infected cells.IMPORTANCEMeasuring the size of the HIV reservoir in people with HIV (PWH) will be important for determining the impact of HIV cure strategies. However, measuring this reservoir is challenging. We report a new method for quantifying HIV-infected cells that involves culturing cells from PWH in an array of microwells with a cell line that detects HIV infection. We show that this approach can detect rare HIV-infected cells and derive detailed virus sequence information for each infected cell.
Assuntos
Infecções por HIV , Virologia , Humanos , Linfócitos T CD4-Positivos , Linhagem Celular , DNA Viral , Infecções por HIV/virologia , Provírus/genética , Carga Viral , Latência Viral , Virologia/métodosRESUMO
We tested the combination of a broadly neutralizing HIV antibody with the latency reversal agent vorinostat (VOR). Eight participants received 2 month-long cycles of VRC07-523LS with VOR. Low-level viremia, resting CD4+ T-cell-associated HIV RNA (rca-RNA) was measured, and intact proviral DNA assay (IPDA) and quantitative viral outgrowth assay (QVOA) were performed at baseline and posttreatment. In 3 participants, IPDA and QVOA declines were accompanied by significant declines of rca-RNA. However, no IPDA or QVOA declines clearly exceeded assay variance or natural decay. Increased resistance to VRC07-523LS was not observed. This combination therapy did not reduce viremia or the HIV reservoir. Clinical Trials Registration. NCT03803605.
Assuntos
Infecções por HIV , HIV-1 , Anticorpos Amplamente Neutralizantes , Linfócitos T CD4-Positivos , HIV-1/genética , Humanos , Viremia/tratamento farmacológico , Latência Viral , Vorinostat/uso terapêuticoRESUMO
Understanding what shapes the latent human immunodeficiency virus type 1 (HIV-1) reservoir is critical for developing strategies for cure. We measured frequency of persistent HIV-1 infection after 5 years of suppressive antiretroviral therapy initiated during chronic infection. Pretreatment CD8+ T-cell activation, nadir CD4 count, and CD4:CD8 ratio predicted reservoir size.
Assuntos
Infecções por HIV , HIV-1 , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , Humanos , Carga Viral , Latência Viral , Replicação ViralRESUMO
Human immunodeficiency virus type 1 typically requires a high density of CD4 for efficient entry as a mechanism to target CD4+ T cells (T-tropic), with CCR5 being used most often as the coreceptor. When target T cells are limiting, the virus can evolve to infect cells with a low density of CD4 such as macrophages (M-tropic). The entry phenotype is known to be encoded in the viral Env protein on the surface of the virus particle. Using data showing a dose response for infectivity based on CD4 surface density, we built a model consistent with T-tropic viruses requiring multiple CD4 molecules to mediate infection, whereas M-tropic viruses can infect cells using a single CD4 receptor molecule interaction. We also found that T-tropic viruses bound to the surface of cells with a low density of CD4 are released more slowly than M-tropic viruses which we modeled to be due to multiple interactions of the T-tropic virus with multiple CD4 molecules to allow the initial stable binding. Finally, we found that some M-tropic Env proteins, as the gp120 subunit, possess an enhanced affinity for CD4 compared with their T-tropic pair, indicating that the evolution of macrophage tropism can be reflected both in the closed Env trimer conformation on the virion surface and, in some cases, also in the open confirmation of gp120 Env. Collectively, these studies reveal differences in the stoichiometry of interaction of T-tropic and M-tropic viruses with CD4 and start to identify the basis of binding differences at the biochemical level. IMPORTANCE: Human immunodeficiency virus type 1 normally targets CD4+ T cells for viral replication. When T cells are limiting, the virus can evolve to infect myeloid cells. The evolutionary step involves a change from requiring a high surface density of CD4 for entry to being able to infect cells with a low density of CD4, as is found on myeloid lineage cells such as macrophage and microglia. Viruses able to infect macrophages efficiently are most often found in the CNS late in the disease course, and such viruses may contribute to neurocognitive impairment. Here, we examine the CD4 binding properties of the viral Env protein to explore these two different entry phenotypes.
Assuntos
HIV-1 , Humanos , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos , Produtos do Gene env/metabolismo , HIV-1/fisiologia , Macrófagos/metabolismo , Receptores CCR5/metabolismo , Proteínas do Envelope Viral/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência HumanaRESUMO
Most myeloid lineage cells express the receptor and coreceptors that make them susceptible to infection by primate lentiviruses (SIVs and HIVs). However, macrophages are the only myeloid lineage cell commonly infected by SIVs and/or HIVs. The frequency of infected macrophages varies greatly across specific host and virus combinations as well as disease states, with infection rates being greatest in pathogenic SIV infections of non-natural hosts (i.e., Asian nonhuman primates (Asian NHPs)) and late in untreated HIV-1 infection. In contrast, macrophages from natural SIV hosts (i.e., African NHPs) are largely resistant to infection due to entry and/or post-entry restriction mechanisms. These highly variable rates of macrophage infection may stem from differences in the host immune environment, entry and post-entry restriction mechanisms, the ability of a virus to adapt to efficiently infect macrophages, and the pleiotropic effects of macrophage-tropism including the ability to infect cells lacking CD4 and increased neutralization sensitivity. Questions remain about the relationship between rates of macrophage infection and viral pathogenesis, with some evidence suggesting that elevated levels of macrophage infection may contribute to greater pathogenesis in non-natural SIV hosts. Alternatively, extensive infection of macrophages may only emerge in the context of high viral loads and immunodeficiency, making it a symptom of highly pathogenic infections, not a primary driver of pathogenesis.
Assuntos
HIV-1/fisiologia , Macrófagos/virologia , Vírus da Imunodeficiência Símia/fisiologia , Tropismo Viral , Animais , Antígenos CD4/metabolismo , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos , Macrófagos/metabolismo , Células Mieloides/metabolismo , Células Mieloides/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Internalização do VírusRESUMO
OBJECTIVE: To study the contribution of γδ T cells to the persistent HIV reservoir. DESIGN: Fifteen HIV-seropositive individuals on suppressive ART were included. We performed parallel quantitative viral outgrowth assays (QVOA) of resting CD4 T (rCD4) cells in the presence or absence of γδ T cells. METHODS: Resting αß+CD4 T cells were magnetically isolated from PBMCs using two different custom cocktails, only one kit contained antibodies to deplete γδ T cells, resulting in two populations: rCD4 cells and rCD4 cells depleted of γδ cells. Frequency of infection was analyzed by QVOA and DNA measurements. RESULTS: Recovery of replication-competent HIV from cultures of rCD4 cells was similar in 11 individuals despite the presence of γδ T cells. In four donors, HIV recovery was lower when γδ T cells were present. Expression of the cytotoxic marker CD16 on Vδ2 cells was the only variable associated with the lower HIV recovery. Our results highlight the potency of those responses since a mean of 10â000 γδ T cells were present within 2.5 million rCD4 cells. However, despite the low frequency of γδ T cells, the presence of cytotoxic Vδ2 cells correlated with lower HIV recovery from cultures of rCD4 cells. CONCLUSION: Results of this study show that quantification of the contribution of γδ T cells to the reservoir is challenging because of their low numbers compared with conventional rCD4 cells and highlights the potent antiviral function of γδ T cells and the impact of their presence on the frequency of latent HIV infection.
Assuntos
Linfócitos T CD4-Positivos , Infecções por HIV , Reservatórios de Doenças , HumanosRESUMO
HIV-1-specific CD8+ T cells are an important component of HIV-1 curative strategies. Viral variants in the HIV-1 reservoir may limit the capacity of T cells to detect and clear virus-infected cells. We investigated the patterns of T cell escape variants in the replication-competent reservoir of 25 persons living with HIV-1 (PLWH) durably suppressed on antiretroviral therapy (ART). We identified all reactive T cell epitopes in the HIV-1 proteome for each participant and sequenced HIV-1 outgrowth viruses from resting CD4+ T cells. All non-synonymous mutations in reactive T cell epitopes were tested for their effect on the size of the T cell response, with a≥50% loss defined as an escape mutation. The majority (68%) of T cell epitopes harbored no detectable escape mutations. These findings suggest that circulating T cells in PLWH on ART could contribute to control of rebound and could be targeted for boosting in curative strategies.
Assuntos
Fármacos Anti-HIV/farmacologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Latência Viral/efeitos dos fármacos , Adulto , Idoso , Estudos de Coortes , Epitopos/imunologia , Feminino , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Filogenia , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacosRESUMO
Although antiretroviral therapy (ART) is highly effective at suppressing HIV-1 replication, the virus persists as a latent reservoir in resting CD4+ T cells during therapy. This reservoir forms even when ART is initiated early after infection, but the dynamics of its formation are largely unknown. The viral reservoirs of individuals who initiate ART during chronic infection are generally larger and genetically more diverse than those of individuals who initiate therapy during acute infection, consistent with the hypothesis that the reservoir is formed continuously throughout untreated infection. To determine when viruses enter the latent reservoir, we compared sequences of replication-competent viruses from resting peripheral CD4+ T cells from nine HIV-positive women on therapy to viral sequences circulating in blood collected longitudinally before therapy. We found that, on average, 71% of the unique viruses induced from the post-therapy latent reservoir were most genetically similar to viruses replicating just before ART initiation. This proportion is far greater than would be expected if the reservoir formed continuously and was always long lived. We conclude that ART alters the host environment in a way that allows the formation or stabilization of most of the long-lived latent HIV-1 reservoir, which points to new strategies targeted at limiting the formation of the reservoir around the time of therapy initiation.