Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Small ; 14(19): e1800187, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29655227

RESUMO

Hybrid polymer-plasmonic nanostructures might combine high enhancement of localized fields from metal nanoparticles with light confinement and long-range transport in subwavelength dielectric structures. Here, the complex behavior of fluorophores coupling to Au nanoparticles within polymer nanowires, which features localized metal-enhanced fluorescence (MEF) with unique characteristics compared to conventional structures, is reported. The intensification effect when the particle is placed in the organic filaments is remarkably higher with respect to thin films of comparable thickness, thus highlighting a specific, nanowire-related enhancement of MEF effects. A dependence on the confinement volume in the dielectric nanowire is also indicated, with MEF significantly increasing upon reduction of the wire diameter. These findings are rationalized by finite element simulations, predicting a position-dependent enhancement of the quantum yield of fluorophores embedded in the fibers. Calculation of the ensemble-averaged fluorescence enhancement unveils the possibility of strongly enhancing the overall emission intensity for structures with size twice the diameter of the embedded metal particles. These new, hybrid fluorescent systems with localized enhanced emission, and the general nanowire-enhanced MEF effects associated to them, are highly relevant for developing nanoscale light-emitting devices with high efficiency and intercoupled through nanofiber networks, highly sensitive optical sensors, and novel laser architectures.

2.
Opt Express ; 25(20): 24604-24614, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041405

RESUMO

Complex assemblies of light-emitting polymer nanofibers with molecular materials exhibiting optical gain can lead to important advance to amorphous photonics and to random laser science and devices. In disordered mats of nanofibers, multiple scattering and waveguiding might interplay to determine localization or spreading of optical modes as well as correlation effects. Here we study electrospun fibers embedding a lasing fluorene-carbazole-fluorene molecule and doped with titania nanoparticles, which exhibit random lasing with sub-nm spectral width and threshold of about 9 mJ cm-2 for the absorbed excitation fluence. We focus on the spatial and spectral behavior of optical modes in the disordered and non-woven networks, finding evidence for the presence of modes with very large spatial extent, up to the 100 µm-scale. These findings suggest emission coupling into integrated nanofiber transmission channels as effective mechanism for enhancing spectral selectivity in random lasers and correlations of light modes in the complex and disordered material.

3.
Nanotechnology ; 28(15): 155303, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28303795

RESUMO

The repair of peripheral nerve lesions is a clinical problem where the functional recovery is often far from being satisfactory, although peripheral nerves generally retain good potential for regeneration. Here, we develop a novel scaffold approach based on bioactive fibers of poly(ε-caprolactone) where nanotopographical guidance and neuregulin 1 (NRG1) cues are combined. We interface them with rat primary Schwann cells (SCs), the peripheral glial cells that drive initial regeneration of injured nerves, and found that the combination of NRG1 with parallel nano-fibrous topographies is effective in improving SC growth up to 72 h, alignment to fiber topography, and bipolar differentiation, opening original perspectives for nerve repair applications.


Assuntos
Neuregulina-1/metabolismo , Poliésteres/química , Células de Schwann/citologia , Alicerces Teciduais/química , Animais , Adesão Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Nanofibras/química , Ratos , Células de Schwann/metabolismo
4.
J Am Chem Soc ; 138(47): 15497-15505, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27933935

RESUMO

Conjugated polymers are complex multichromophore systems, with emission properties strongly dependent on the electronic energy transfer through active subunits. Although the packing of the conjugated chains in the solid state is known to be a key factor to tailor the electronic energy transfer and the resulting optical properties, most of the current solution-based processing methods do not allow for effectively controlling the molecular order, thus making the full unveiling of energy transfer mechanisms very complex. Here we report on conjugated polymer fibers with tailored internal molecular order, leading to a significant enhancement of the emission quantum yield. Steady state and femtosecond time-resolved polarized spectroscopies evidence that excitation is directed toward those chromophores oriented along the fiber axis, on a typical time scale of picoseconds. These aligned and more extended chromophores, resulting from the high stretching rate and electric field applied during the fiber spinning process, lead to improved emission properties. Conjugated polymer fibers are relevant to develop optoelectronic plastic devices with enhanced and anisotropic properties.

5.
Mol Pharm ; 13(3): 729-36, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26870885

RESUMO

Core-shell fibers are emerging as interesting microstructures for the controlled release of drugs, proteins, and complex biological molecules, enabling the fine control of microreservoirs of encapsulated active agents, of the release kinetics, and of the localized delivery. Here we load luminescent molecules and enhanced green fluorescent proteins into the core of fibers realized by coaxial electrospinning. Photoluminescence spectroscopy evidences unaltered molecular emission following encapsulation and release. Moreover, the release kinetics is microscopically investigated by confocal analysis at individual-fiber scale, unveiling different characteristic time scales for diffusional translocation at the core and at the shell. These results are interpreted by a two stage desorption model for the coaxial microstructure, and they are relevant in the design and development of efficient fibrous systems for the delivery of functional biomolecules.


Assuntos
Técnicas Eletroquímicas/métodos , Proteínas de Fluorescência Verde/metabolismo , Nanofibras/química , Polímeros/química , Difusão , Humanos , Solubilidade
6.
Anal Bioanal Chem ; 408(5): 1357-64, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26670770

RESUMO

Nanofibers functionalized by metal nanostructures and particles are exploited as effective flexible substrates for surface-enhanced Raman scattering (SERS) analysis. Their complex three-dimensional structure may provide Raman signals enhanced by orders of magnitude compared to untextured surfaces. Understanding the origin of such improved performances is therefore very important for pushing nanofiber-based analytical technologies to their upper limit. Here, we report on polymer nanofiber mats which can be exploited as substrates for enhancing the Raman spectra of adsorbed probe molecules. The increased surface area and the scattering of light in the nanofibrous system are individually analyzed as mechanisms to enhance Raman scattering. The deposition of gold nanorods on the fibers further amplifies Raman signals due to SERS. This study suggests that Raman signals can be finely tuned in intensity and effectively enhanced in nanofiber mats and arrays by properly tailoring the architecture, composition, and light-scattering properties of the complex networks of filaments.

7.
Small ; 11(48): 6417-24, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26539625

RESUMO

A fundamental issue in biomedical and environmental sciences is the development of sensitive and robust sensors able to probe the analyte of interest, under physiological and pathological conditions or in environmental samples, and with very high spatial resolution. In this work, novel hybrid organic fibers that can effectively report the analyte concentration within the local microenvironment are reported. The nanostructured and flexible wires are prepared by embedding fluorescent pH sensors based on seminaphtho-rhodafluor-1-dextran conjugate. By adjusting capsule/polymer ratio and spinning conditions, the diameter of the fibers and the alignment of the reporting capsules are both tuned. The hybrid wires display excellent stability, high sensitivity, as well as reversible response, and their operation relies on effective diffusional kinetic coupling of the sensing regions and the embedding polymer matrix. These devices are believed to be a powerful new sensing platform for clinical diagnostics, bioassays and environmental monitoring.


Assuntos
Nanofibras/química , Nanotecnologia/métodos , Compostos Orgânicos/química , Concentração de Íons de Hidrogênio , Íons , Microscopia Confocal , Nanofibras/ultraestrutura , Fatores de Tempo
8.
Small ; 11(48): 6416, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26768351

RESUMO

On page 6417, L. L. del Mercato, D. Pisignano, and co-workers report a new type of 3D nanostructured pH-sensing organic fiber with embedded ratiometric fluorescent capsules. Upon proton-induced switching, the fibers undergo optical changes that are recorded by fluorescence detectors and correlated to the analyte concentration. The developed electrospinning fabrication approach is facile and versatile and enables the creation of sensitive and highly robust pH-sensing 3D scaffolds for environmental monitoring and biomedical applications, including tissue engineering and wound healing.


Assuntos
Nanofibras/química , Nanotecnologia/métodos , Concentração de Íons de Hidrogênio , Íons , Prótons , Engenharia Tecidual , Alicerces Teciduais/química
9.
Soft Matter ; 11(17): 3424-31, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25855945

RESUMO

Electrospun polymer jets are imaged for the first time at an ultra-high rate of 10,000 frames per second, investigating the process dynamics, and the instability propagation velocity and displacement in space. The polymer concentration, applied voltage bias and needle-collector distance are systematically varied, and their influence on the instability propagation velocity and on the jet angular fluctuations is analyzed. This allows us to unveil the instability formation and cycling behavior, and its exponential growth at the onset, exhibiting radial growth rates of the order of 10(3) s(-1). Allowing the conformation and evolution of polymeric solutions to be studied in depth, high-speed imaging at the sub-ms scale shows significant potential for improving the fundamental knowledge of electrified jets, leading to finely controllable bending and solution stretching in electrospinning, and consequently better designed nanofiber morphologies and structures.

10.
J Am Chem Soc ; 136(40): 14245-54, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25264943

RESUMO

While most of the studies on molecular machines have been performed in solution, interfacing these supramolecular systems with solid-state nanostructures and materials is very important in view of their utilization in sensing components working by chemical and photonic actuation. Host polymeric materials, and particularly polymer nanofibers, enable the manipulation of the functional molecules constituting molecular machines and provide a way to induce and control the supramolecular organization. Here, we present electrospun nanocomposites embedding a self-assembling rotaxane-type system that is responsive to both optical (UV-vis light) and chemical (acid/base) stimuli. The system includes a molecular axle comprised of a dibenzylammonium recognition site and two azobenzene end groups and a dibenzo[24]crown-8 molecular ring. The dethreading and rethreading of the molecular components in nanofibers induced by exposure to base and acid vapors, as well as the photoisomerization of the azobenzene end groups, occur in a similar manner to what observed in solution. Importantly, however, the nanoscale mechanical function following external chemical stimuli induces a measurable variation of the macroscopic mechanical properties of nanofibers aligned in arrays, whose Young's modulus is significantly enhanced upon dethreading of the axles from the rings. These composite nanosystems show therefore great potential for application in chemical sensors, photonic actuators, and environmentally responsive materials.

11.
Small ; 10(12): 2439-50, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24623539

RESUMO

The major cause of synthetic vessel failure is thrombus and neointima formation. To prevent these problems the creation of a continuous and elongated endothelium inside lumen vascular grafts might be a promising solution for tissue engineering. Different micro- and nano-surface topographic cues including grooved micro-patterns and electrospun fibers have been previously demonstrated to guide the uniform alignment of endothelial cells (ECs). Here, with a very simple and highly versatile approach we combined electrospinning with soft lithography to fabricate nanofibrous scaffolds with oriented fibers modulated by different micro-grooved topographies. The effect of these scaffolds on the behavior of the ECs are analyzed, including their elongation, spreading, proliferation, and functioning using unpatterned random and aligned nanofibers (NFs) as controls. It is demonstrated that both aligned NFs and micro-patterns effectively influence the cellular response, and that a proper combination of topographic parameters, exploiting the synergistic effects of micro-scale and sub-micrometer features, can promote EC elongation, allowing the creation of a confluent ECs monolayer in analogy with the natural endothelium as assessed by the positive expression of vinculin. Combining different micro- and nano-topographic cues by complementary soft patterning and spinning technologies could open interesting perspectives for engineered vascular replacement constructions.


Assuntos
Prótese Vascular , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/síntese química , Regeneração Tecidual Guiada/instrumentação , Alicerces Teciduais/química , Proliferação de Células , Forma Celular , Células Cultivadas , Galvanoplastia/métodos , Gelatina/química , Regeneração Tecidual Guiada/métodos , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Láctico/química , Teste de Materiais , Poliésteres , Polímeros/química
12.
Nano Lett ; 13(11): 5056-62, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24090350

RESUMO

The properties of polymeric nanofibers can be tailored and enhanced by properly managing the structure of the polymer molecules at the nanoscale. Although electrospun polymer fibers are increasingly exploited in many technological applications, their internal nanostructure, determining their improved physical properties, is still poorly investigated and understood. Here, we unravel the internal structure of electrospun functional nanofibers made by prototype conjugated polymers. The unique features of near-field optical measurements are exploited to investigate the nanoscale spatial variation of the polymer density, evidencing the presence of a dense internal core embedded in a less dense polymeric shell. Interestingly, nanoscale mapping the fiber Young's modulus demonstrates that the dense core is stiffer than the polymeric, less dense shell. These findings are rationalized by developing a theoretical model and simulations of the polymer molecular structural evolution during the electrospinning process. This model predicts that the stretching of the polymer network induces a contraction of the network toward the jet center with a local increase of the polymer density, as observed in the solid structure. The found complex internal structure opens an interesting perspective for improving and tailoring the molecular morphology and multifunctional electronic and optical properties of polymer fibers.

13.
Adv Opt Mater ; 8(22): 2001039, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33365226

RESUMO

Lasers based on biological materials are attracting an increasing interest in view of their use in integrated and transient photonics. Deoxyribonucleic acid (DNA) as optical biopolymer in combination with highly emissive dyes has been reported to have excellent potential in this respect. However, achieving miniaturized lasing systems based on solid-state DNA shaped in different geometries to confine and enhance emission is still a challenge, and the physicochemical mechanisms originating fluorescence enhancement are not fully understood. Herein, a class of wavelength-tunable lasers based on DNA nanofibers is demonstrated, for which optical properties are highly controlled through the system morphology. A synergistic effect is highlighted at the basis of lasing action. Through a quantum chemical investigation, it is shown that the interaction of DNA with the encapsulated dye leads to hindered twisting and suppressed channels for the nonradiative decay. This is combined with effective waveguiding, optical gain, and tailored mode confinement to promote morphologically controlled lasing in DNA-based nanofibers. The results establish design rules for the development of bright and tunable nanolasers and optical networks based on DNA nanostructures.

14.
ACS Appl Mater Interfaces ; 12(23): 26320-26329, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32406678

RESUMO

Realizing active, light-emitting fibers made of conjugated polymers by the electrospinning method is generally challenging. Electrospinning of plasma-treated conjugated polymer solutions is here developed for the production of light-emitting microfibers and nanofibers. Active fibers from conjugated polymer solutions rapidly processed by a cold atmospheric argon plasma are electrospun in an effective way, and they show a smoother surface and bead-less morphology, as well as preserved optical properties in terms of absorption, emission, and photoluminescence quantum yield. In addition, the polarization of emitted light and more notably photon waveguiding along the length of individual fibers are remarkably enhanced by electrospinning plasma-treated solutions. These properties come from a synergetic combination of favorable intermolecular coupling in the solutions, increased order of macromolecules on the nanoscale, and resulting fiber morphology. Such findings make the coupling of the electrospinning method and cold atmospheric plasma processing on conjugated polymer solutions a highly promising and possibly general route to generate light-emitting and conductive micro- and nanostructures for organic photonics and electronics.

15.
J Mater Chem C Mater ; 7(1): 170-176, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30931127

RESUMO

All-optical switches are introduced which are based on deoxyribonucleic acid (DNA) in the form of electrospun fibers, where DNA is semi-intercalated with a push-pull, luminescent nonlinear pyrazoline derivative. Optical birefringence is found in the organic nanofibers, with fully reversible switching controlled through continuous-wave laser irradiation. The photoinduced signal is remarkably large, with birefringence highlighted by optically-driven refractive index anisotropy approaching 0.001. Sub-millisecond characteristic switching times are found. Integrating dye-intercalated DNA complex systems in organic nanofibers, as a convenient and efficient approach to template molecular organization and control it by external stimuli, might open new routes for realizing optical logic gates, reconfigurable photonic networks and sensors through physically-transient biopolymer components.

16.
J Phys Chem C Nanomater Interfaces ; 122(5): 3058-3067, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29449907

RESUMO

Hybrid conjugated polymer/fullerene filaments based on MEH-PPV/PVP/PCBM were prepared by electrospinning, and their properties were assessed by scanning electron, atomic and lateral-force, tunneling, and confocal microscopies, as well as by attenuated-total-reflection Fourier transform infrared spectroscopy, photoluminescence quantum yield, and spatially resolved fluorescence. Highlighted features include the ribbon shape of the realized fibers and the persistence of a network serving as a template for heterogeneous active layers in solar cell devices. A set of favorable characteristics is evidenced in this way in terms of homogeneous charge-transport behavior and formation of effective interfaces for diffusion and dissociation of photogenerated excitons. The interaction of the organic filaments with light, exhibiting specific light-scattering properties of the nanofibrous mat, might also contribute to spreading incident radiation across the active layers, thus potentially enhancing photovoltaic performance. This method might be applied to other electron donor-electron acceptor material systems for the fabrication of solar cell devices enhanced by nanofibrillar morphologies embedding conjugated polymers and fullerene compounds.

17.
Biotechnol J ; 12(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28745417

RESUMO

Streptomycetes are exploited for the production of a wide range of secondary metabolites, including antibiotics. Therefore, both academic and industrial research efforts are focused on enhancing production of these precious metabolites. So far, this has been mostly achieved by classical or recombinant genetic techniques, in association with process optimization for either submerged or solid state fermentation. New cultivation approaches addressing the natural mycelial growth and life cycle would allow the biosynthetic potential of filamentous strains to be much better exploited. We developed a cultivation system for antibiotic-producing microorganisms which involves electrospun organic nanofibers deposited onto agar plates or immersed in liquid media. Dense filamentous networks of branched hyphae formed by bacterial colonies were found to wrapped around the fibers. We analyzed the effects of fibers on growth and antibiotic production in Streptomyces lividans, and found that the actinorhodin, undecylprodigiosin and calcium dependent antibiotic productions were positively modulated, with a two- to sixfold enhancement compared to standard culture conditions. Highlighting the secondary metabolism-promoting role of nanofibers in bacterial cultures, these results open a route to the design of improved culture systems for microorganisms based on organic nanostructures.


Assuntos
Antibacterianos/metabolismo , Técnicas de Cultura de Células/instrumentação , Nanofibras/química , Streptomyces lividans/metabolismo , Streptomyces lividans/fisiologia , Técnicas de Cultura de Células/métodos , Meios de Cultura/química
18.
ACS Nano ; 10(6): 6125-30, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27203403

RESUMO

Nanoscale generation of individual photons in confined geometries is an exciting research field aiming at exploiting localized electromagnetic fields for light manipulation. One of the outstanding challenges of photonic systems combining emitters with nanostructured media is the selective channelling of photons emitted by embedded sources into specific optical modes and their transport at distant locations in integrated systems. Here, we show that soft-matter nanofibers, electrospun with embedded emitters, combine subwavelength field localization and large broadband near-field coupling with low propagation losses. By momentum spectroscopy, we quantify the modal coupling efficiency identifying the regime of single-mode coupling. These nanofibers do not rely on resonant interactions, making them ideal for room-temperature operation, and offer a scalable platform for future quantum information technology.

19.
ACS Nano ; 10(8): 8012-8, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27454946

RESUMO

In this work, we study the reinforcement of polymers by mechanically interlocked derivatives of single-walled carbon nanotubes (SWNTs). We compare the mechanical properties of fibers made of polymers and of composites with pristine SWNTs, mechanically interlocked derivatives of SWNTs (MINTs), and the corresponding supramolecular models. Improvements of both Young's modulus and tensile strength of up to 200% were observed for the polystyrene-MINT samples with an optimized loading of just 0.01 wt %, while the supramolecular models with identical chemical composition and loading showed negligible or even detrimental influence. This behavior is found for three different types of SWNTs and two types of macrocycles. Molecular dynamics simulations show that the polymer adopts an elongated conformation parallel to the SWNT when interacting with MINT fillers, irrespective of the macrocycle chemical nature, whereas a more globular structure is taken upon facing with either pristine SWNTs or supramolecular models. The MINT composite architecture thus leads to a more efficient exploitation of the axial properties of the SWNTs and of the polymer chain at the interface, in agreement with experimental results. Our findings demonstrate that the mechanical bond imparts distinctive advantageous properties to SWNT derivatives as polymer fillers.

20.
Biomaterials ; 94: 57-69, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27105437

RESUMO

The treatment of renal injury by autologous, patient-specific adult stem cells is still an unmet need. Unsolved issues remain the spatial integration of stem cells into damaged areas of the organ, the commitment in the required cell type and the development of improved bioengineered devices. In this respect, biomaterials and architectures have to be specialized to control stem cell differentiation. Here, we perform an extensive study on micropatterned extracellular matrix proteins, which constitute a simple and non-invasive approach to drive the differentiation of adult renal progenitor/stem cells (ARPCs) from human donors. ARPCs are interfaced with fibronectin (FN) micropatterns, in the absence of exogenous chemicals or cellular reprogramming. We obtain the differentiation towards tubular cells of ARPCs cultured in basal medium conditions, the tubular commitment thus being specifically induced by micropatterned substrates. We characterize the stability of the tubular differentiation as well as the induction of a polarized phenotype in micropatterned ARPCs. Thus, the developed cues, driving the functional commitment of ARPCs, offer a route to recreate the microenvironment of the stem cell niche in vitro, that may serve, in perspective, for the development of ARPC-based bioengineered devices.


Assuntos
Células-Tronco Adultas/citologia , Túbulos Renais/citologia , Células-Tronco/citologia , Adulto , Células-Tronco Adultas/metabolismo , Western Blotting , Caderinas/genética , Caderinas/metabolismo , Adesão Celular , Diferenciação Celular , Núcleo Celular/metabolismo , Forma Celular , Sobrevivência Celular , Fibronectinas/metabolismo , Humanos , Queratina-19/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA