Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Environ Res ; 228: 115919, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37072081

RESUMO

The rapid increase in the global population and its ever-rising standards of living are imposing a huge burden on global resources. Apart from the rising energy needs, the demand for freshwater is correspondingly increasing. A population of around 3.8 billion people will face water scarcity by 2030, as per the reports of the World Water Council. This may be due to global climate change and the deficiency in the treatment of wastewater. Conventional wastewater treatment technologies fail to completely remove several emerging contaminants, especially those containing pharmaceutical compounds. Hence, leading to an increase in the concentration of harmful chemicals in the human food chain and the proliferation of several diseases. MXenes are transition metal carbide/nitride ceramics that primarily structure the leading 2D material group. MXenes act as novel nanomaterials for wastewater treatment due to their high surface area, excellent adsorption properties, and unique physicochemical properties, such as high electrical conductivity and hydrophilicity. MXenes are highly hydrophilic and covered with active functional groups (i.e., hydroxyl, oxygen, fluorine, etc.), which makes them efficient adsorbents for a wide range of species and promising candidates for environmental remediation and water treatment. This work concludes that the scaling up process of MXene-based materials for water treatment is currently of high cost. The up-to-date applications are still limited because MXenes are currently produced mainly in the laboratory with limited yield. It is recommended to direct research efforts towards lower synthesis cost procedures coupled with the use of more environmentally friendly materials to avoid secondary contamination.


Assuntos
Cerâmica , Águas Residuárias , Humanos , Adsorção , Preparações Farmacêuticas
2.
Environ Res ; 204(Pt A): 111967, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34450159

RESUMO

Green synthesis approaches of nanomaterials (NMs) have received considerable attention in recent years as it addresses the sustainability issues posed by conventional synthesis methods. However, recent works of literature do not present the complete picture of biogenic NMs. This paper addresses the previous gaps by providing insights into the stability and toxicity of NMs, critically reviewing the various biological agents and solvents required for synthesis, sheds light on the factors that affect biosynthesis, and outlines the applications of NMs across various sectors. Despite the advantages of green synthesis, current methods face challenges with safe and appropriate solvent selection, process parameters that affect the synthesis process, nanomaterial cytotoxicity, bulk production and NM morphology control, tedious maintenance, and knowledge deficiencies. Consequently, the green synthesis of NMs is largely trapped in the laboratory phase. Nevertheless, the environmental friendliness, biocompatibility, and sensitivities of the resulting NMs have wider applications in biomedical science, environmental remediation, and consumer industries. To the scale-up application of biogenic NMs, future research should be focused on understanding the mechanisms of the synthesis processes, identifying more biological and chemical agents that can be used in synthesis, and developing the practicality of green synthesis at the industrial scale, and optimizing the factors affecting the synthesis process.


Assuntos
Recuperação e Remediação Ambiental , Nanoestruturas , Nanoestruturas/toxicidade , Solventes
3.
Environ Res ; 214(Pt 1): 113808, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35798264

RESUMO

Increasing human population, deforestation and man-made climate change are likely to exacerbate the negative effects on freshwater ecosystems and species endangerment. Consequently, the biodiversity of freshwater continues to dwindle at an alarming rate. However, this particular topic lacks sufficient attention from conservation ecologists and policymakers, resulting in a dearth of data and comprehensive reviews on freshwater biodiversity, specifically. Despite the widespread awareness of risks to freshwater biodiversity, organized action to reverse this decline has been lacking. This study reviews prospective conservation and management strategies for freshwater biodiversity and their associated challenges, identifying current key threats to freshwater biodiversity. Engineered nanomaterials pose a significant threat to aquatic species, and will make controlling health risks to freshwater biodiversity increasingly challenging in the future. When fish are exposed to nanoparticles, the surface area of their respiratory and ion transport systems can decline to 60% of their total surface area, posing serious health risks. Also, about 50% of freshwater fish species are threatened by climate change, globally. Freshwater biodiversity that is heavily reliant on calcium perishes when the calcium content of their environments degrades, posing another severe threat to world biodiversity. To improve biodiversity, variables such as species diversity, population and water quality, and habitat are essential components that must be monitored continuously. Existing research on freshwater biota and ecosystems is still lacking. Therefore, data collection and the establishment of specialized policies for the conservation of freshwater biodiversity should be prioritized.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Cálcio , Peixes , Água Doce , Humanos , Estudos Prospectivos
4.
Environ Res ; 214(Pt 1): 113807, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35798266

RESUMO

Wastewater containing toxic substances is a major threat to the health of both aquatic and terrestrial ecosystems. In order to treat wastewater, nanomaterials are currently being studied intensively due to their unprecedented properties. The unique features of nanoparticles are prompting an increasing number of studies into their use in wastewater treatment. Although several studies have been undertaken in recent years, most of them did not focus on some of the nanomaterials that are now often utilized for wastewater treatment. It is essential to investigate the most recent advances in all the types of nanomaterials that are now frequently employed for wastewater treatment. The recent advancements in common nanomaterials used for sustainable wastewater treatment is comprehensively reviewed in this paper. This paper also thoroughly assesses unique features, proper utilization, future prospects, and current limitations of green nanotechnology in wastewater treatment. Zero-valent metal and metal oxide nanoparticles, especially iron oxides were shown to be more effective than traditional carbon nanotubes (CNTs) for recovering heavy metals in wastewater. Iron oxide achieved 75.9% COD (chemical oxygen demand) removal efficiency while titanium oxide (TiO2) achieved 75.5% COD. Iron nanoparticles attained 72.1% methyl blue removal efficiency. However, since only a few types of nanomaterials have been commercialized, it is important to also focus on the economic feasibility of each nanomaterial. This study found that the large surface area, high reactivity, and strong mechanical properties of nanoparticles means they can be considered as a promising option for successful wastewater treatment.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Poluentes Químicos da Água , Adsorção , Ecossistema , Ferro , Águas Residuárias
5.
Environ Res ; 205: 112458, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863687

RESUMO

This study explores the role of renewable energy (RE) penetration in Malaysia's energy security (ES) and its implications for the country's target of 20% capacity in the energy mix by 2025. Renewable energy (RE) is a critical driver of long-term energy security. In 2018, the share of renewable energy in Malaysia's energy mix was 9%, falling far short of the national target of 20% penetration by 2025. This study employs a system dynamics approach to investigate the relationship between RE penetration and correlated indicators from energy security (ES) dimensions: energy availability, environmental sustainability, and socio-economics. The causal relationships between the three-dimensional indicators of ES have been established using causal and stock and flow logic. Simulated results show that energy consumption has increased sharply, while energy efficiency and economic growth have only increased by a small margin with an increase in RE from 2015 to 2020. The energy intensity is expected to rise slightly by the end of the fifth year. As a result, the overall impact is positive for Malaysia's environmental sustainability while reducing its reliance on energy imports and meeting national economic growth demands.


Assuntos
Dióxido de Carbono , Recuperação e Remediação Ambiental , Dióxido de Carbono/análise , Desenvolvimento Econômico , Energia Renovável
6.
Environ Chem Lett ; 20(1): 141-152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34602923

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously evolving and four variants of concern have been identified so far, including Alpha, Beta, Gamma and Delta variants. Here we review the indirect effect of preventive measures such as the implementation of lockdowns, mandatory face masks, and vaccination programs, to control the spread of the different variants of this infectious virus on the environment. We found that all these measures have a considerable environmental impact, notably on waste generation and air pollution. Waste generation is increased due to the implementation of all these preventive measures. While lockdowns decrease air pollution, unsustainable management of face mask waste and temperature-controlled supply chains of vaccination potentially increases air pollution.

7.
Environ Res ; 192: 110294, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33022215

RESUMO

The rapid spread of COVID-19 has led to nationwide lockdowns in many countries. The COVID-19 pandemic has played serious havoc on economic activities throughout the world. Researchers are immensely curious about how to give the best protection to people before a vaccine becomes available. The coronavirus spreads principally through saliva droplets. Thus, it would be a great opportunity if the virus spread could be controlled at an early stage. The face mask can limit virus spread from both inside and outside the mask. This is the first study that has endeavoured to explore the design and fabrication of an antiviral face mask using licorice root extract, which has antimicrobial properties due to glycyrrhetinic acid (GA) and glycyrrhizin (GL). An electrospinning process was utilized to fabricate nanofibrous membrane and virus deactivation mechanisms discussed. The nanofiber mask material was characterized by SEM and airflow rate testing. SEM results indicated that the nanofibers from electrospinning are about 15-30 µm in diameter with random porosity and orientation which have the potential to capture and kill the virus. Theoretical estimation signifies that an 85 L/min rate of airflow through the face mask is possible which ensures good breathability over an extensive range of pressure drops and pore sizes. Finally, it can be concluded that licorice root membrane may be used to produce a biobased face mask to control COVID-19 spread.


Assuntos
Antivirais , Betacoronavirus , COVID-19 , Coronavirus , Pneumonia Viral , Antivirais/uso terapêutico , Glycyrrhiza , Humanos , Máscaras , Nanofibras , Pandemias , Pneumonia Viral/tratamento farmacológico , SARS-CoV-2
8.
Environ Res ; 195: 110857, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33581088

RESUMO

The nature of micro- and nanoplastics and their harmful consequences has drawn significant attention in recent years in the context of environmental protection. Therefore, this paper aims to provide an overview of the existing literature related to this evolving subject, focusing on the documented human health and marine environment impacts of micro- and nanoplastics and including a discussion of the economic challenges and strategies to mitigate this waste problem. The study highlights the micro- and nanoplastics distribution across various trophic levels of the food web, and in different organs in infected animals which is possible due to their reduced size and their lightweight, multi-coloured and abundant features. Consequently, micro- and nanoplastics pose significant risks to marine organisms and human health in the form of cytotoxicity, acute reactions, and undesirable immune responses. They affect several sectors including aquaculture, agriculture, fisheries, transportation, industrial sectors, power generation, tourism, and local authorities causing considerable economic losses. This can be minimised by identifying key sources of environmental plastic contamination and educating the public, thus reducing the transfer of micro- and nanoplastics into the environment. Furthermore, the exploitation of the potential of microorganisms, particularly those from marine origins that can degrade plastics, could offer an enhanced and environmentally sound approach to mitigate micro- and nanoplastics pollution.


Assuntos
Organismos Aquáticos , Poluentes Químicos da Água , Animais , Humanos , Microplásticos , Plásticos/toxicidade , Fatores Socioeconômicos , Poluentes Químicos da Água/análise
9.
Biotechnol Appl Biochem ; 68(6): 1257-1270, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33016525

RESUMO

Nanoparticles are the magic bullets and at the leading edge in the field of nanotechnology, and their unique properties make these materials indispensable and superior in many areas, including the electronic field. Extensive applications of nanomaterials are incontrovertibly entering our living system. The increasing use of nanomaterials into the ecosystem is one of the crucial environmental factors that human being is facing. Nanomaterials raise noticeable toxicological concerns; particularly their accumulation in plants and the resultant toxicity may affect the food chain. Here, we analyzed the characterization of nanomaterials, such as graphene, Al2 O3 , TiO2 , and semi-insulating or conducting nanoparticles. Quantitative evaluation of the nanomaterials was conducted and their commercialization aspects were discussed. Various characterization techniques, scanning electron microscopy, X-ray diffraction, and ultraviolet rays were utilized to identify the morphology, phase, absorbance, and crystallinity. In addition, we analyzed the effects of nanomaterials on plants. The toxicity of nanoparticles has severe effects on loss of morphology of the plants. Potential mechanisms including physical and physiological effects were analyzed. In future studies, it is indispensable to assess widely accepted toxicity evaluation for safe production and use of nanomaterials.


Assuntos
Óxido de Alumínio/análise , Grafite/análise , Jasminum/química , Nanopartículas/análise , Titânio/análise , Humanos , Tamanho da Partícula
10.
Environ Pollut ; 343: 123190, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142809

RESUMO

Microplastic pollution has emerged as a new environmental concern due to our reliance on plastic. Recent years have seen an upward trend in scholarly interest in the topic of microplastics carrying contaminants; however, the available review studies have largely focused on specific aspects of this issue, such as sorption, transport, and toxicological effects. Consequently, this review synthesizes the state-of-the-art knowledge on these topics by presenting key findings to guide better policy action toward microplastic management. Microplastics have been reported to absorb pollutants such as persistent organic pollutants, heavy metals, and antibiotics, leading to their bioaccumulation in marine and terrestrial ecosystems. Hydrophobic interactions are found to be the predominant sorption mechanism, especially for organic pollutants, although electrostatic forces, van der Waals forces, hydrogen bonding, and pi-pi interactions are also noteworthy. This review reveals that physicochemical properties of microplastics, such as size, structure, and functional groups, and environmental compartment properties, such as pH, temperature, and salinity, influence the sorption of pollutants by microplastic. It has been found that microplastics influence the growth and metabolism of organisms. Inadequate methods for collection and analysis of environmental samples, lack of replication of real-world settings in laboratories, and a lack of understanding of the sorption mechanism and toxicity of microplastics impede current microplastic research. Therefore, future research should focus on filling in these knowledge gaps.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Microplásticos/toxicidade , Microplásticos/química , Plásticos/análise , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Ecossistema , Poluentes Químicos da Água/análise , Adsorção
11.
Environ Pollut ; 341: 122889, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972679

RESUMO

Emerging contaminants (ECs) are increasingly recognized as threats to human health and ecosystems. This review evaluates advanced analytical methods, particularly mass spectrometry, for detecting ECs and understanding their toxicity, transformation pathways, and environmental distribution. Our findings underscore the reliability of current techniques and the potential of upcoming methods. The adverse effects of ECs on aquatic life necessitate both in vitro and in vivo toxicity assessments. Evaluating the distribution and degradation of ECs reveals that they undergo physical, chemical, and biological transformations. Remediation strategies such as advanced oxidation, adsorption, and membrane bioreactors effectively treat EC-contaminated waters, with combinations of these techniques showing the highest efficacy. To minimize the impact of ECs, a proactive approach involving monitoring, regulations, and public education is vital. Future research should prioritize the refining of detection methods and formulation of robust policies for EC management.


Assuntos
Ecossistema , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Reprodutibilidade dos Testes , Poluição da Água
12.
Chemosphere ; 336: 139291, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37353165

RESUMO

This paper offers a comprehensive analysis of algal-based membrane bioreactors (AMBRs) and their potential for removing hazardous and toxic contaminants from wastewater. Through an identification of contaminant types and sources, as well as an explanation of AMBR operating principles, this study sheds light on the promising capabilities of AMBRs in eliminating pollutants like nitrogen, phosphorus, and organic matter, while generating valuable biomass and energy. However, challenges and limitations, such as the need for process optimization and the risk of algal-bacterial imbalance, have been identified. To overcome these obstacles, strategies like mixed cultures and bioaugmentation techniques have been proposed. Furthermore, this study explores the wider applications of AMBRs beyond wastewater treatment, including the production of value-added products and the removal of emerging contaminants. The findings underscore the significance of factors such as appropriate algal-bacterial consortia selection, hydraulic and organic loading rate optimization, and environmental factor control for the success of AMBRs. A comprehensive understanding of these challenges and opportunities can pave the way for more efficient and effective wastewater treatment processes, which are crucial for safeguarding public health and the environment.


Assuntos
Poluentes Ambientais , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Bactérias
13.
Bioresour Technol ; 345: 126408, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34838631

RESUMO

This study develops and applies the PROMETHEE-GAIA method as a new tool to select microalgae strains for aviation fuel production. Assessment involves 19 criteria with equal weighting in three aspects, namely biomass production, lipid quality, and fatty acid methylester properties. Here, the method is demonstrated for evaluating 17 candidate microalgae strains. Chlorella sp. NT8a is assessed as the most suitable strain for aviation fuel production. The results also show that unmodified biofuel from the most suitable strain could not meet all jet fuel standards. In particular, microalgae-based fuel could not satisfy the required density, heating value and freezing points of the international jet fuel standards. These results highlight the need for a broad action plan including improvement in the processing or modification of biofuel produced from microalgae and revision of the current jet fuel standards to facilitate the introduction of microalgae-based biofuel for the aviation industry.


Assuntos
Aviação , Chlorella , Microalgas , Biocombustíveis , Biomassa
14.
J Hazard Mater ; 424(Pt B): 127396, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34673394

RESUMO

The application of waste oils as pyrolysis feedstocks to produce high-grade biofuels is receiving extensive attention, which will diversify energy supplies and address environmental challenges caused by waste oils treatment and fossil fuel combustion. Waste oils are the optimal raw materials to produce biofuels due to their high hydrogen and volatile matter content. However, traditional disposal methods such as gasification, transesterification, hydrotreating, solvent extraction, and membrane technology are difficult to achieve satisfactory effects owing to shortcomings like enormous energy demand, long process time, high operational cost, and hazardous material pollution. The usage of clean and safe pyrolysis technology can break through the current predicament. The bio-oil produced by the conventional pyrolysis of waste oils has a high yield and HHV with great potential to replace fossil fuel, but contains a high acid value of about 120 mg KOH/g. Nevertheless, the application of CaO and NaOH can significantly decrease the acid value of bio-oil to close to zero. Additionally, the addition of coexisting bifunctional catalyst, SBA-15@MgO@Zn in particular, can simultaneously reduce the acid value and positively influence the yield and quality of bio-oil. Moreover, co-pyrolysis with plastic waste can effectively save energy and time, and improve bio-oil yield and quality. Consequently, this paper presents a critical and comprehensive review of the production of biofuels using conventional and advanced pyrolysis of waste oils.


Assuntos
Biocombustíveis , Pirólise , Catálise , Alimentos , Temperatura Alta , Plásticos
15.
Bioresour Technol ; 343: 126069, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34606926

RESUMO

This study aims to evaluate the performance of C. vulgaris microalgae to simultaneously recover nutrients from sludge centrate and produce biomass in a membrane photobioreactor (MPR). Microalgae growth and nutrient removal were evaluated at two different nutrient loading rates (sludge centrate). The results show that C. vulgaris microalgae could thrive in sludge centrate. Nutrient loading has an indiscernible impact on biomass growth and a notable impact on nutrient removal efficiency. Nutrient removal increased as the nutrient loading rate decreased and hydraulic retention time increased. There was no membrane fouling observed in the MPR and the membrane water flux was fully restored by backwashing using only water. However, the membrane permeability varies with the hydraulic retention time (HRT) and biomass concentration in the reactor. Longer HRT offers higher permeability. Therefore, it is recommended to operate the MPR system in lower HRT to improve the membrane resistance and energy consumption.


Assuntos
Fotobiorreatores , Esgotos , Biomassa , Nutrientes , Águas Residuárias/análise
16.
Chemosphere ; 286(Pt 1): 131656, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34325255

RESUMO

The utilization of microalgae in treating wastewater has been an emerging topic focussed on finding an economically sustainable and environmentally friendly approach to treating wastewater. Over the last several years, different types of con microalgae and bacteria consortia have been experimented with to explore their potential in effectively treating wastewater from different sources. The basic features considered while determining efficiency is their capacity to remove nutrients including nitrogen (N) and phosphorus (P) and heavy metals like arsenic (As), lead (Pb), and copper (Cu). This paper reviews the efficiency of microalgae as an approach to treating wastewater from different sources and compares conventional and microalgae-based treatment systems. The paper also discusses the characteristics of wastewater, conventional methods of wastewater treatment that have been used so far, and the technological mechanisms for removing nutrients and heavy metals from contaminated water. Microalgae can successfully eliminate the suspended nutrients and have been reported to successfully remove N, P, and heavy metals by up to 99.6 %, 100 %, and 13%-100 % from different types of wastewater. However, although a microalgae-based wastewater treatment system offers some benefits, it also presents some challenges as outlined in the last section of this paper. Performance in eliminating nutrients from wastewater is affected by different parameters such as temperature, biomass productivity, osmotic ability, pH, O2 concentration. Therefore, the conducting of pilot-scale studies and exploration of the complexities of contaminants under complex environmental conditions is recommended.


Assuntos
Microalgas , Biomassa , Nitrogênio , Fósforo , Águas Residuárias
17.
Chemosphere ; 306: 135527, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35780994

RESUMO

Membrane technology has rapidly gained popularity in wastewater treatment due to its cost-effectiveness, environmentally friendly tools, and elevated productivity. Although membrane performance in wastewater treatment has been reviewed in several past studies, the key techniques for improving membrane performance, as well as their challenges, and solutions associated with the membrane process, were not sufficiently highlighted in those studies. Also, very few studies have addressed hybrid techniques to improve membrane performance. The present review aims to fill those gaps and achieve public health benefits through safe water processing. Despite its higher cost, membrane performance can result in a 36% reduction in flux degradation. The issue with fouling has been identified as one of the key challenges of membrane technology. Chemical cleaning is quite effective in removing accumulated foulant. Fouling mitigation techniques have also been shown to have a positive effect on membrane photobioreactors that handle wastewater effluent, resulting in a 50% and 60% reduction in fouling rates for backwash and nitrogen bubble scouring techniques. Membrane hybrid approaches such as hybrid forward-reverse osmosis show promise in removing high concentrations of phosphorus, ammonium, and salt from wastewater. The incorporation of the forward osmosis process can reject 99% of phosphorus and 97% of ammonium, and the reverse osmosis approach can achieve a 99% salt rejection rate. The control strategies for membrane fouling have not been successfully optimized yet and more research is needed to achieve a realistic, long-term direct membrane filtering operation.


Assuntos
Compostos de Amônio , Purificação da Água , Membranas Artificiais , Osmose , Fósforo , Cloreto de Sódio , Águas Residuárias , Purificação da Água/métodos
18.
Bioresour Technol ; 360: 127565, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35788392

RESUMO

This review provides an update on the state-of-the art technologies for the valorization of solid waste and its mechanism to generate various bio-products. The organic content of these wastes can be easily utilized by the microbes and produce value-added compounds. Microbial fermentation techniques can be utilized for developing waste biorefinery processes. The utilization of lignocellulosic and plastics wastes for the generation of carbon sources for microbial utilization after pre-processing steps will make the process a multi-product biorefinery. The C1 and C2 gases generated from different industries could also be utilized by various microbes, and this will help to control global warming. The review seeks to expand expertise about the potential application through several perspectives, factors influencing remediation, issues, and prospects.


Assuntos
Biocombustíveis , Resíduos Sólidos , Biocombustíveis/análise , Fermentação
19.
Sci Total Environ ; 753: 141920, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32889316

RESUMO

The extensive use of fossil fuels and the environmental effect of their combustion products have attracted researchers to look into renewable energy sources. In addition, global mass production of waste has motivated communities to recycle and reuse the waste in a sustainable way to lower landfill waste and associated problems. The development of waste to energy (WtE) technology including the production of bioenergy, e.g. biogas produced from various waste through Anaerobic Digestion (AD), is considered one of the potential measures to achieve the sustainable development goals of the United Nations (UN). Therefore, this study reviews the most recent studies from relevant academic literature on WtE technology (particularly AD technology) for biogas production and the application of a solar-assisted biodigester (SAB) system aimed at improving performance. In addition, socio-economic factors, challenges, and perspectives have been reported. From the analysis of different technologies, further work on effective low-cost technologies is recommended, especially using SAB system upgrading and leveraging the opportunities of this system. The study found that the performance of the AD system is affected by a variety of factors and that different approaches can be applied to improve performance. It has also been found that solar energy systems efficiently raise the biogas digester temperature and through this, they maximize the biogas yield under optimum conditions. The study revealed that the solar-assisted AD system produces less pollution and improves performance compared to the conventional AD system.


Assuntos
Biocombustíveis , Anaerobiose
20.
Chemosphere ; 281: 130878, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34022602

RESUMO

The utilization of renewable lignocellulosic biomasses for bioenergy synthesis is believed to facilitate competitive commercialization and realize affordable clean energy sources in the future. Among the pathways for biomass pretreatment methods that enhance the efficiency of the whole biofuel production process, the combined microwave irradiation and physicochemical approach is found to provide many economic and environmental benefits. Several studies on microwave-based pretreatment technologies for biomass conversion have been conducted in recent years. Although some reviews are available, most did not comprehensively analyze microwave-physicochemical pretreatment techniques for biomass conversion. The study of these techniques is crucial for sustainable biofuel generation. Therefore, the biomass pretreatment process that combines the physicochemical method with microwave-assisted irradiation is reviewed in this paper. The effects of this pretreatment process on lignocellulosic structure and the ratio of achieved components were also discussed in detail. Pretreatment processes for biomass conversion were substantially affected by temperature, irradiation time, initial feedstock components, catalyst loading, and microwave power. Consequently, neoteric technologies utilizing high efficiency-based green and sustainable solutions should receive further focus. In addition, methodologies for quantifying and evaluating effects and relevant trade-offs should be develop to facilitate the take-off of the biofuel industry with clean and sustainable goals.


Assuntos
Biocombustíveis , Micro-Ondas , Biomassa , Lignina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA