Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(6): 8878-8897, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32225505

RESUMO

The rise in the power conversion efficiency (PCE) of perovskite solar cells has triggered enormous interest in perovskite-based tandem photovoltaics. One key challenge is to achieve high transmission of low energy photons into the bottom cell. Here, nanostructured front electrodes for 4-terminal perovskite/crystalline-silicon (perovskite/c-Si) tandem solar cells are developed by conformal deposition of indium tin oxide (ITO) on self-assembled polystyrene nanopillars. The nanostructured ITO is optimized for reduced reflection and increased transmission with a tradeoff in increased sheet resistance. In the optimum case, the nanostructured ITO electrodes enhance the transmittance by ∼7% (relative) compared to planar references. Perovskite/c-Si tandem devices with nanostructured ITO exhibit enhanced short-circuit current density (2.9 mA/cm2 absolute) and PCE (1.7% absolute) in the bottom c-Si solar cell compared to the reference. The improved light in-coupling is more pronounced for elevated angle of incidence. Energy yield enhancement up to ∼10% (relative) is achieved for perovskite/c-Si tandem architecture with the nanostructured ITO electrodes. It is also shown that these nanostructured ITO electrodes are also compatible with various other perovskite-based tandem architectures and bear the potential to improve the PCE up to 27.0%.

2.
Energy Environ Sci ; 17(8): 2800-2814, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38659971

RESUMO

The recent tremendous progress in monolithic perovskite-based double-junction solar cells is just the start of a new era of ultra-high-efficiency multi-junction photovoltaics. We report on triple-junction perovskite-perovskite-silicon solar cells with a record power conversion efficiency of 24.4%. Optimizing the light management of each perovskite sub-cell (∼1.84 and ∼1.52 eV for top and middle cells, respectively), we maximize the current generation up to 11.6 mA cm-2. Key to this achievement was our development of a high-performance middle perovskite sub-cell, employing a stable pure-α-phase high-quality formamidinium lead iodide perovskite thin film (free of wrinkles, cracks, and pinholes). This enables a high open-circuit voltage of 2.84 V in a triple junction. Non-encapsulated triple-junction devices retain up to 96.6% of their initial efficiency if stored in the dark at 85 °C for 1081 h.

3.
ACS Appl Mater Interfaces ; 13(39): 46488-46498, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34551256

RESUMO

Narrow-band gap (NBG) Sn-Pb perovskites with band gaps of ∼1.2 eV, which correspond to a broad photon absorption range up to ∼1033 nm, are highly promising candidates for bottom solar cells in all-perovskite tandem photovoltaics. To exploit their potential, avoiding optical losses in the top layer stacks of the tandem configuration is essential. This study addresses this challenge in two ways (1) removing the hole-transport layer (HTL) and (2) implementing highly transparent hydrogen-doped indium oxide In2O3:H (IO:H) electrodes instead of the commonly used indium tin oxide (ITO). Removing HTL reduces parasitic absorption loss in shorter wavelengths without compromising the photovoltaic performance. IO:H, with an ultra-low near-infrared optical loss and a high charge carrier mobility, results in a remarkable increase in the photocurrent of the semitransparent top and (HTL-free) NBG bottom perovskite solar cells when substituted for ITO. As a result, an IO:H-based four-terminal all-perovskite tandem solar cell (4T all-PTSCs) with a power conversion efficiency (PCE) as high as 24.8% is demonstrated, outperforming ITO-based 4T all-PTSCs with PCE up to 23.3%.

4.
ACS Appl Mater Interfaces ; 10(19): 16390-16399, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29687715

RESUMO

This paper reports on the impact of outdoor temperature variations on the performance of organo metal halide perovskite solar cells (PSCs). It shows that the open-circuit voltage ( VOC) of a PSC decreases linearly with increasing temperature. Interestingly, in contrast to these expected trends, the current density ( JSC) of PSCs is found to decline strongly below 20% of the initial value upon cycling the temperatures from 10 to 60 °C and back. This decline in the current density is driven by an increasing series resistance and is caused by the fast temperature variations as it is not apparent for solar cells exposed to constant temperatures of the same range. The effect is fully reversible when the devices are kept illuminated at an open circuit for several hours. Given these observations, an explanation that ascribes the temperature variation-induced performance decline to ion accumulation at the contacts of the solar cell because of temperature variation-induced changes of the built-in field of the PSC is proposed. The effect might be a major obstacle for perovskite photovoltaics because the devices exposed to real outdoor temperature profiles over 4 h showed a performance decline of >15% when operated at a maximum power point.

5.
ACS Appl Mater Interfaces ; 10(26): 21985-21990, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29888902

RESUMO

Perovskite solar cells (PSCs) demonstrate excellent power conversion efficiencies (PCEs) but face severe stability challenges. One key degradation mechanism is exposure to ultraviolet (UV) light. However, the impact of different UV bands is not yet well established. Here, we systematically study the stability of PSCs on the basis of a methylammonium lead iodide (CH3NH3PbI3) absorber exposed to (i) 310-317 (UV-B range) and (ii) 360-380 nm (UV-A range), under accelerated conditions. We demonstrate that the investigated UV-B band is detrimental to the stability of PSCs, resulting in PCE degradation by more than 50% after an exposure period >1700 sun-hours. This finding is valid for architectures with a range of electron transport layers, including SnO2, compact-TiO2, electron-beam TiO2, and nanoparticle-TiO2. We also show that photodegradation is apparent for high, as well as for low illumination intensities of UV-B light, but not for illumination with UV-A wavelengths. Finally, we show that degradation of PSCs is preventable at the cost of a small fraction of photocurrent by using UV-filtering or luminescent downshifting layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA