Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 431, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715130

RESUMO

BACKGROUND: Drought is most likely the most significant abiotic stress affecting wheat yield. The discovery of drought-tolerant genotypes is a promising strategy for dealing with the world's rapidly diminishing water resources and growing population. A genome-wide association study (GWAS) was conducted on 298 Iranian bread wheat landraces and cultivars to investigate the genetic basis of yield, yield components, and drought tolerance indices in two cropping seasons (2018-2019 and 2019-2020) under rainfed and well-watered environments. RESULTS: A heatmap display of hierarchical clustering divided cultivars and landraces into four categories, with high-yielding and drought-tolerant genotypes clustering in the same group. The results of the principal component analysis (PCA) demonstrated that selecting genotypes based on the mean productivity (MP), geometric mean productivity (GMP), harmonic mean (HM), and stress tolerance index (STI) can help achieve high-yield genotypes in the environment. Genome B had the highest number of significant marker pairs in linkage disequilibrium (LD) for both landraces (427,017) and cultivars (370,359). Similar to cultivars, marker pairs on chromosome 4A represented the strongest LD (r2 = 0.32). However, the genomes D, A, and B have the highest LD, respectively. The single-locus mixed linear model (MLM) and multi-locus random-SNP-effect mixed linear model (mrMLM) identified 1711 and 1254 significant marker-trait association (MTAs) (-log10 P > 3) for all traits, respectively. A total of 874 common quantitative trait nucleotides (QTNs) were simultaneously discovered by both MLM and mrMLM methods. Gene ontology revealed that 11, 18, 6, and 11 MTAs were found in protein-coding regions (PCRs) for spike weight (SW), thousand kernel weight (TKW), grain number per spike (GN), and grain yield (GY), respectively. CONCLUSION: The results identified rich regions of quantitative trait loci (QTL) on Ch. 4A and 5A suggest that these chromosomes are important for drought tolerance and could be used in wheat breeding programs. Furthermore, the findings indicated that landraces studied in Iranian bread wheat germplasm possess valuable alleles, that are responsive to water-limited conditions. This GWAS experiment is one of the few types of research conducted on drought tolerance that can be exploited in the genome-mediated development of novel varieties of wheat.


Assuntos
Resistência à Seca , Triticum , Triticum/genética , Estudo de Associação Genômica Ampla , Irã (Geográfico) , Pão , Melhoramento Vegetal , Variação Genética
2.
Physiol Mol Biol Plants ; 29(6): 889-902, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37520809

RESUMO

High molecular weight glutenin subunits (HMW-GSs) at the Glu-1 loci play an important role in the variation of dough strength, elasticity, and end-use quality of bread wheat. Multilocation trials in a wide range of climatic conditions and crop management practices help explain the role of HMW-GSs in the rheological properties of dough. In the current study, allelic variation of HMWs and quality scores were determined in 28 bread wheat cultivars across a wide range of climates and locations in Iran. Twelve HMW-GSs subunits (3 at Glu-A1, 7 at Glu-B1 and 2 at Glu D-1) in 16 unique combinations were identified in the studied cultivars. In the most rheological properties associated with good bread-making quality, the compositions of 1/17 + 18/5 + 10, 1/13 + 16/5 + 10 and 2*/7 + 9/5 + 10 (all with a quality score of 10) had significantly higher values than the other allelic compositions. While, the lowest values were observed in 1/21 + 19/2 + 12 (quality score of 6). The degree of dough softening was significantly greater in 1/21 + 19/2 + 12 than other allelic combinations. At Glu-A1, Glu-B1 and Glu-D1, 2*, 17 + 18 and 5 + 10 had significantly greater qualitative and rheological properties than the other subunits, which are related to the good quality of wheat flour. While null at Glu-A1, subunits 21 + 19 at Glu-B1 and 2 + 12 at Glu-D1 were associated with weak baking quality. Moreover, the highest dough softening values at Glu-A1, Glu-B1 and Glu-D1 were observed in null, 21 + 19 and 2 + 12 subunits, respectively. A negative and significant correlation (P < 0.05) was observed between the degree of dough softening and other qualitative and rheological properties related to good bread-making performance. The results of this study demonstrated the role of HMW-GSs in determining the end-use quality of bread wheat across a wide range of climates and environments. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01324-6.

3.
BMC Genomics ; 23(1): 831, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522726

RESUMO

BACKGROUND: The markers detected by genome-wide association study (GWAS) make it possible to dissect genetic structure and diversity at many loci. This can enable a wheat breeder to reveal and used genomic loci controlling drought tolerance. This study was focused on determining the population structure of Iranian 208 wheat landraces and 90 cultivars via genotyping-by-sequencing (GBS) and also on detecting marker-trait associations (MTAs) by GWAS and genomic prediction (GS) of wheat agronomic traits for drought-tolerance breeding. GWASs were conducted using both the original phenotypes (pGWAS) and estimated breeding values (eGWAS). The bayesian ridge regression (BRR), genomic best linear unbiased prediction (gBLUP), and ridge regression-best linear unbiased prediction (rrBLUP) approaches were used to estimate breeding values and estimate prediction accuracies in genomic selection. RESULTS: Population structure analysis using 2,174,975 SNPs revealed four genetically distinct sub-populations from wheat accessions. D-Genome harbored the lowest number of significant marker pairs and the highest linkage disequilibrium (LD), reflecting different evolutionary histories of wheat genomes. From pGWAS, BRR, gBLUP, and rrBLUP, 284, 363, 359 and 295 significant MTAs were found under normal and 195, 365, 362 and 302 under stress conditions, respectively. The gBLUP with the most similarity (80.98 and 71.28% in well-watered and rain-fed environments, correspondingly) with the pGWAS method in the terms of discovered significant SNPs, suggesting the potential of gBLUP in uncovering SNPs. Results from gene ontology revealed that 29 and 30 SNPs in the imputed dataset were located in protein-coding regions for well-watered and rain-fed conditions, respectively. gBLUP model revealed genetic effects better than other models, suggesting a suitable tool for genome selection in wheat. CONCLUSION: We illustrate that Iranian landraces of bread wheat contain novel alleles that are adaptive to drought stress environments. gBLUP model can be helpful for fine mapping and cloning of the relevant QTLs and genes, and for carrying out trait introgression and marker-assisted selection in both normal and drought environments in wheat collections.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Teorema de Bayes , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Irã (Geográfico) , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Chuva , Triticum/genética
4.
BMC Plant Biol ; 22(1): 300, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715737

RESUMO

BACKGROUND: Pre-harvest sprouting (PHS) refers to a phenomenon, in which the physiologically mature seeds are germinated on the spike before or during the harvesting practice owing to high humidity or prolonged period of rainfall. Pre-harvest sprouting (PHS) remarkably decreases seed quality and yield in wheat; hence it is imperative to uncover genomic regions responsible for PHS tolerance to be used in wheat breeding. A genome-wide association study (GWAS) was carried out using 298 bread wheat landraces and varieties from Iran to dissect the genomic regions of PHS tolerance in a well-irrigated environment. Three different approaches (RRBLUP, GBLUP and BRR) were followed to estimate prediction accuracies in wheat genomic selection. RESULTS: Genomes B, A, and D harbored the largest number of significant marker pairs (MPs) in both landraces (427,017, 328,006, 92,702 MPs) and varieties (370,359, 266,708, 63,924 MPs), respectively. However, the LD levels were found the opposite, i.e., genomes D, A, and B have the highest LD, respectively. Association mapping by using GLM and MLM models resulted in 572 and 598 marker-trait associations (MTAs) for imputed SNPs (- log10 P > 3), respectively. Gene ontology exhibited that the pleitropic MPs located on 1A control seed color, α-Amy activity, and PHS. RRBLUP model indicated genetic effects better than GBLUP and BRR, offering a favorable tool for wheat genomic selection. CONCLUSIONS: Gene ontology exhibited that the pleitropic MPs located on 1A can control seed color, α-Amy activity, and PHS. The verified markers in the current work can provide an opportunity to clone the underlying QTLs/genes, fine mapping, and genome-assisted selection.Our observations uncovered key MTAs related to seed color, α-Amy activity, and PHS that can be exploited in the genome-mediated development of novel varieties in wheat.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Pão , Genômica , Germinação/genética , Irã (Geográfico) , Melhoramento Vegetal , Sementes/genética , alfa-Amilases
5.
Physiol Mol Biol Plants ; 22(3): 391-398, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27729725

RESUMO

A primary concern of modern plant breeding is that genetic diversity has decreased during the past century. This study set out to explore changes in genetic variation during 84 years of breeding by investigating the germination-related traits, inter-simple sequence repeat (ISSR) fingerprinting and osmotic stress tolerance of 30 Iranian wheat (Triticum aestivum L.) cultivars. Seeds were planted under control and osmotic stress (-2, -4 and -6 bar) in three replications. The ISSR experiment was carried out using 32 different primers. Genotypes were divided into two groups (old and new) each containing 15 members. The results of ANOVA showed that highly significant differences existed among genotypes and among growth conditions. The results showed that during breeding in some traits such as coleoptile length and seedling vigor index, a significant decrease has been occurred. New cultivars had a mean coleoptile length of 33 mm, shorter than that of old cultivars (42 mm) under osmotic stress of -6 bar. Genetic variance of root length, shoot length and seedling vigor index for old cultivars were 1.59, 1.93 and 45,763, respectively, significantly higher than those for new cultivars (0.55, 1.08 and 27,996, respectively). This difference was also verified by ISSR results as the polymorphism information content was 0.28 in old cultivars, higher than that of new cultivars (0.26). These results prove this claim that during breeding, genetic diversity has decreased for many germination-related traits and breeders are better to pay more attention to genetic diversity.

6.
Sci Rep ; 12(1): 17839, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284129

RESUMO

Seed traits in bread wheat are valuable to breeders and farmers, thus it is important exploring putative QTLs responsible for key traits to be used in breeding programs. GWAS was carried out using 298 bread wheat landraces and cultivars from Iran to uncover the genetic basis of seed characteristics in both rain-fed and well-watered environments. The analyses of linkage disequilibrium (LD) between marker pairs showed that the largest number of significant LDs in landraces (427,017) and cultivars (370,359) was recorded in genome B, and the strongest LD was identified on chromosome 4A (0.318). LD decay was higher in the B and A genomes, compared to the D genome. Mapping by using mrMLM (LOD > 3) and MLM (0.05/m, Bonferroni) led to 246 and 67 marker-trait associations (MTAs) under rain-fed, as well as 257 and 74 MTAs under well-watered conditions, respectively. The study found that 3VmrMLM correctly detected all types of loci and estimated their effects in an unbiased manner, with high power and accuracy and a low false positive rate, which led to the identification of 140 MTAs (LOD > 3) in all environments. Gene ontology revealed that 10 and 10 MTAs were found in protein-coding regions for rain-fed and well-watered conditions, respectively. The findings suggest that landraces studied in Iranian bread wheat germplasm possess valuable alleles, which are responsive to water-limited conditions. MTAs uncovered in this study can be exploited in the genome-mediated development of novel wheat cultivars.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Irã (Geográfico) , Água , Melhoramento Vegetal , Genoma de Planta , Desequilíbrio de Ligação , Fenótipo , Sementes/genética , Chuva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA