RESUMO
Many insects enter a state of dormancy (diapause) during winter in which they lower their metabolism to save energy. Metabolic suppression is a hallmark of diapause, yet we know little about the mechanisms underpinning metabolic suppression in winter or how it is reversed in the spring. Here, we show that metabolic suppression in dormant Colorado potato beetles results from the breakdown of flight muscle mitochondria via mitophagy. Diapausing Colorado potato beetles suppress their metabolism by 90%, and this lowered metabolic rate coincides with a similar reduction in flight muscle mitochondrial function and density. During early diapause, beetles increase the expression of mitophagy-related transcripts (Parkin and ATG5) in their flight muscle coincident with an increase in mitophagy-related structures in the flight muscle. Knocking down Parkin expression with RNA interference in diapausing beetles prevented some mitochondrial breakdown and partially restored the whole animal metabolic rate, suggesting that metabolic suppression in diapausing beetles is driven by mitophagy. In other animals and in models of disease, such large-scale mitochondrial degradation is irreversible. However, we show that as diapause ends, beetles reverse mitophagy and increase the expression of PGC1α and NRF1 to replenish flight muscle mitochondrial pools. This mitochondrial biogenesis is activated in anticipation of diapause termination and in the absence of external stimuli. Our study provides a mechanistic link between mitochondrial degradation in insect tissues over the winter and whole-animal metabolic suppression.
Assuntos
Besouros , Diapausa de Inseto , Mitofagia , Animais , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Besouros/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias Musculares/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Low winter temperatures in temperate climates can limit the success of non-native species. The Asian longhorned beetle, Anoplophora glabripennis, is an invasive wood-boring pest of hardwood trees in North America and Europe. Native A. glabripennis populations are spread across several climate zones in China and the Korean Peninsula and are likely to encounter low temperatures in at least some of this range. Understanding the lethal limits of the overwintering life stages of A. glabripennis is essential for accurately modeling the risk that invasive populations pose to non-native environments. In this study, we provide the first systematic characterization of the cold tolerance strategy and lower lethal limits of A. glabripennis eggs, larvae, and pupae. In diapausing larvae, the most common overwintering stage in this species, we measure hemolymph glycerol and osmolality and identify the effects of prolonged low temperature exposure. In developing pupae, we identify sublethal effects caused by low temperature exposure before freezing. Eggs and larvae were the most cold-tolerant life stages; eggs were freeze-avoidant with an average supercooling point of -25.8 °C and larvae were freeze tolerant with an LT90 of -25 °C. Hemolymph osmolality of freeze-tolerant larvae, on average, increased to 811 mOsm during chilling. This increase was primarily driven by a concurrent, average increase of 232 mM hemolymph glycerol. Pupae died upon exposure to freezing temperatures, but accumulate strong sublethal effects prior to freezing, indicating that they are chill susceptible. Taken together, these data will be useful to inform species distribution modeling in A. glabripennis.
Assuntos
Besouros/fisiologia , Larva/fisiologia , Concentração Osmolar , Pupa/fisiologia , Animais , Temperatura Baixa , Congelamento , Hemolinfa , Laboratórios , Fenótipo , Estações do Ano , TemperaturaRESUMO
An insect's capacity to survive winter is critical for range expansion in temperate regions. The Asian longhorned beetle (Anoplophora glabripennis) is a polyphagous wood-boring insect native to China and the Korean peninsula and poses a high risk of invasion in North America and Europe. It is unclear whether A. glabripennis enters diapause, which means that diapause cannot be included in assessments of the risk of this species invading forests in temperate regions. Using a laboratory colony, we examine larval developmental arrest, metabolic rates, gas exchange patterns, thermal sensitivity, and body composition to characterize larval dormancy. Chilled larvae entered a temperature-independent developmental arrest which usually required more than four weeks of chilling to break, decreased their metabolic rate by as much as 63%, and maintained energy stores throughout the chilling period - results consistent with an obligate diapause. We also observed a switch to discontinuous gas exchange at low temperatures. Thermal sensitivity of metabolic rate did not differ between chilled and non-chilled larvae. Taken together, we conclude that A. glabripennis enters a larval diapause during chilling and terminates diapause after a requisite chilling period. These results will enhance our ability to predict phenology and potential distribution of current and future invasions of A. glabripennis.
Assuntos
Besouros/fisiologia , Diapausa de Inseto , Animais , Besouros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologiaRESUMO
Gene regulation and metabolism are two fundamental processes that coordinate the self-renewal and differentiation of neural precursor cells (NPCs) in the developing mammalian brain. However, little is known about how metabolic signals instruct gene expression to control NPC homeostasis. Here, we show that methylglyoxal, a glycolytic intermediate metabolite, modulates Notch signalling to regulate NPC fate decision. We find that increased methylglyoxal suppresses the translation of Notch1 receptor mRNA in mouse and human NPCs, which is mediated by binding of the glycolytic enzyme GAPDH to an AU-rich region within Notch1 3'UTR. Interestingly, methylglyoxal inhibits the enzymatic activity of GAPDH and engages it as an RNA-binding protein to suppress Notch1 translation. Reducing GAPDH levels or restoring Notch signalling rescues methylglyoxal-induced NPC depletion and premature differentiation in the developing mouse cortex. Taken together, our data indicates that methylglyoxal couples the metabolic and translational control of Notch signalling to control NPC homeostasis.