Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Small ; : e2401787, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766969

RESUMO

Cancer is recognized as one of the major causes of mortality, however, early-stage detection can increase the survival chance greatly. It is recognized that folate receptors are gradually overexpressed in the cellular membrane with the progress of cancer from stage 1 to stage 4. Utilizing the fact, herein, developed a porous silica nanoparticle system C1@SiO2-FA-NP; A) impregnated with thermodynamically stable Mn(II) complex (1) molecules within the core of the nanoparticle, and B) surface functionalized with folate units. It exhibited a high longitudinal relaxivity value r1 = 21.45 mM-1s-1 that substantially increased to r1 = 40.97 mM-1s-1 in the presence of 0.67 mM concentration of BSA under the physiological condition. The in vitro fluorescent images after surface conjugation of C1@SiO2-FA-NP with FITC (fluorescein isothiocyanate) buttressed the inclusion of the nanoparticle exclusively within the cancerous HeLa cells than that of healthy HEK293 cells. The importance of the surface-bound folate unit in the nanoparticle is further established by comparing the fluorescent images of HeLa cells in the absence of the group. Finally, the applicability of C1@SiO2-FA-NP as the T1-weighted MRI contrast agent for early-stage cancer diagnosis is established within C57BL/6 mice after infecting the mice with HeLa cells.

2.
Microb Pathog ; 196: 106989, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357684

RESUMO

Mastitis, an intramammary inflammation resulting from microbial infectious agents, continues to pose a significant challenge within the dairy sector, adversely affecting animal well-being and leading to substantial economic losses. These losses are attributed to decreased milk production, heightened culling rates, and the expenses related to diagnostics, veterinary care, medication, and labor. Moreover, additional costs emerge due to reduced forthcoming milk yields, compromised reproductive health, and increased susceptibility to various illnesses. Identifying the responsible agents is crucial for disease management and the implementation of antimicrobial treatments. Despite the prevalent use of antibiotic treatment, the pressing need for new therapeutic alternatives to combat bovine mastitis arises from limitations, including low cure rates, rising resistance, and the presence of antibiotic residues in milk. This review explores the potential application of herbal extracts and essential oils known for their antimicrobial properties as alternative options for managing pathogens in mastitis treatment. It examines various treatment methods and management strategies, particularly emphasizing the progress of herbal remedies and natural therapeutics in addressing mastitis, a significant concern in bovine populations and dairy herds.

3.
Biotechnol Lett ; 46(5): 807-826, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38985258

RESUMO

Diclofenac is a hepatotoxic non-steroidal anti-inflammatory drug (NSAID) that affects liver histology and its protein expression levels. Here, we studied the effect of diclofenac on rat liver when co-administrated with either Yersinia enterocolitica strain 8081 serotype O:8 biovar 1B (D*Y) or Lactobacillus fermentum strain 9338 (D*L). Spectroscopic analysis of stool samples showed biotransformation of diclofenac. When compared with each other, D*Y rats lack peaks at 1709 and 1198 cm-1, while D*L rats lack peaks at 1411 cm-1. However, when compared to control, both groups lack peaks at 1379 and 1170 cm-1. Assessment of serum biomarkers of hepatotoxicity indicated significantly altered activities of AST (D*Y: 185.65 ± 8.575 vs Control: 61.9 ± 2.607, D*L: 247.5 ± 5.717 vs Control: 61.9 ± 2.607), ALT (D*Y: 229.8 ± 6.920 vs Control: 70.7 ± 3.109, D*L: 123.75 ± 6.068 vs Control: 70.7 ± 3.109), and ALP (D*Y: 276.4 ± 18.154 vs Control: 320.6 ± 9.829, D*L: 298.5 ± 12.336 vs Control: 320.6 ± 9.829) in IU/L. The analysis of histological alterations showed hepatic sinusoidal dilation with vein congestion and cell infiltration exclusively in D*Y rats along with other histological changes that are common to both test groups, thereby suggesting more pronounced alterations in D*Y rats. Further, LC-MS/MS based label-free quantitation of proteins from liver tissues revealed 74.75% up-regulated, 25.25% down-regulated in D*Y rats and 51.16% up-regulated, 48.84% down-regulated in D*L experiments. The proteomics-identified proteins majorly belonged to metabolism, apoptosis, stress response and redox homeostasis, and detoxification and antioxidant defence that demonstrated the potential damage of rat liver, more pronounced in D*Y rats. Altogether the results are in favor that the administration of lactobacilli somewhat protected the rat hepatic cells against the diclofenac-induced toxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Diclofenaco , Limosilactobacillus fermentum , Fígado , Proteoma , Yersinia enterocolitica , Animais , Diclofenaco/toxicidade , Ratos , Limosilactobacillus fermentum/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Yersinia enterocolitica/efeitos dos fármacos , Yersinia enterocolitica/metabolismo , Proteoma/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Masculino , Anti-Inflamatórios não Esteroides/toxicidade , Anti-Inflamatórios não Esteroides/metabolismo , Biomarcadores/sangue
4.
Microb Pathog ; 185: 106398, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852551

RESUMO

Pasteurella multocida, a Gram-negative zoonotic bacterial pathogen, interacts with the host environment, immune response, and infection through outer membrane proteins, adhesins, and sialic acid binding proteins. Sialic acids provide nutrition and mask bacterial identity, hindering the complement system, facilitates tissue access and biofilm formation. Sialic acid binding protein (SAB) enable adhesion to host cells, immune evasion, and nutrient acquisition, making them potential targets for preventing Pasteurella multocida infections. In this study, in silico molecular docking assessed 11 antibiotics targeting SAB (4MMP) comparing their docking scores to Amoxicillin. As SAB (4MMP) exhibits a highly conserved sequence in various Pasteurella multocida strains, including the specific strain PMR212 studied in this article, with a 96.09% similarity score. Aztreonam and Gentamicin displayed the highest docking scores (-6.025 and -5.718), followed by a 100ns molecular dynamics simulation. Aztreonam exhibited stable simulation with protein RMSD fluctuations of 1.8-2.2 Å. The ligand initially had an RMSD of 1.6 Å, stabilizing at 4.8 Å. Antibiotic sensitivity testing confirmed Aztreonam's efficacy with the largest inhibition zone of 42 mm, while Amoxicillin and Gentamicin had inhibition zones of 32 mm and 25 mm, respectively. According to CLSI guidelines, all three antibiotics were effective against Pasteurella multocida. Aztreonam's superior efficacy positions it as a promising candidate for further investigation in targeting Pasteurella multocida.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Humanos , Antibacterianos/metabolismo , Aztreonam/farmacologia , Aztreonam/metabolismo , Infecções por Pasteurella/microbiologia , Ácido N-Acetilneuramínico/metabolismo , Simulação de Acoplamento Molecular , Amoxicilina/farmacologia , Gentamicinas/farmacologia
5.
Mikrochim Acta ; 190(10): 412, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37740009

RESUMO

A TiO2-guanine nanocomposite (TG NC)-based electrochemical biosensor was immobilized with hemagglutinin (HA) gene specific probe with 5' NH2 group on screen-printed gold electrode (probe(ss)DNA-TG-SPGE). The modified biosensor was examined for H1N1 swine flu virus. TG NCs along with precursors were characterized spectroscopically and morphologically by employing several approaches. Electrochemical investigations were performed with the help of cyclic voltammetric (CV) and electrochemical impedance spectroscopy (EIS) in 0.1 M phosphate buffer saline (PBS; pH 7.4) with 1 µM methylene blue (MB) redox indicator. For better detection of single-stranded virus DNA, the modified electrode was optimized at various concentrations, pH, and scan rates. The modified biosensor showed high sensitivity (40.32 µA/ng.cm2), low LOD (0.00024 ng/6 µL), and broad linear range 0.0002-20 ng/6µL with coefficient of determination of R2=0.9981 for H1N1 virus detection. The HA gene-modified biosensor presented decent stability and specificity against different infectious pathogens including H3N2 virus and human DNA with negative response. Furthermore, the modified biosensor also responded well for real sample target DNA detection with a recovery of >96%. The simply designed HA gene-modified biosensor transduces decreased current response towards target-specific (ss)DNA binding and could be used as a rapid detection tool for H1N1 swine flu virus diagnosis.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Humanos , Animais , Suínos , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza A Subtipo H1N1/genética , DNA de Cadeia Simples , Guanina
6.
Toxicol Appl Pharmacol ; 457: 116315, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372189

RESUMO

The long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) is known to damage the intestinal epithelial cells (IECs) that play numerous important roles, including nutrient absorption and barrier protection. In the current study, we determined the effect of ketoprofen on the rat gut when administered with Yersinia enterocolitica. On performing the label-free quantitation of the rat gut proteins, the expression of 494 proteins out of 1628 proteins was altered, which has a profound effect on NF-kB signaling pathway, immune system, dysbiosis, and gut injury. Further, the biochemical [enhanced malondialdehyde (MDA) & hepatic enzyme activities and reduced serotonin & antioxidants levels i.e., catalase (CAT) and superoxide dismutase (SOD)] and histopathological analysis suggested the significant damage in treated rats, compared to control rats. Lastly, the elevated plus maze (EPM) study confirmed high levels of anxiety in treated rats in comparison to the control group. Altogether, results suggest that the co-administration of ketoprofen with Y. enterocolitica damages gut, alters hepatic enzyme activities, and affects behavioral responses in the treated rats.

7.
J Appl Microbiol ; 132(6): 4112-4129, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35199405

RESUMO

Reactive oxygen species (ROS; free radical form O2 •- , superoxide radical; OH• , hydroxyl radical; ROO• , peroxyl; RO• , alkoxyl and non-radical form 1 O2 , singlet oxygen; H2 O2 , hydrogen peroxide) are inevitable companions of aerobic life with crucial role in gut health. But, overwhelming production of ROS can cause serious damage to biomolecules. In this review, we have discussed several sources of ROS production that can be beneficial or dangerous to the human gut. Micro-organisms, organelles and enzymes play crucial role in ROS generation, where NOX1 is the main intestinal enzyme, which produce ROS in the intestine epithelial cells. Previous studies have reported that probiotics play significant role in gut homeostasis by checking the ROS generation, maintaining the antioxidant level, immune system and barrier protection. With current knowledge, we have critically analysed the available literature and presented the outcome in the form of bubble maps to suggest that the probiotics help in controlling the ROS-specific intestinal diseases, such as inflammatory bowel disease (IBD) and colon cancer. Finally, it has been concluded that rebooting of the gut microbiota with probiotics, postbiotics or faecal microbiota transplantation (FMT) can have crucial implications in the structuring of gut communities for the personalized management of the gastrointestinal (GI) diseases.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Probióticos , Disbiose , Transplante de Microbiota Fecal , Humanos , Espécies Reativas de Oxigênio
8.
Crit Rev Microbiol ; 47(2): 254-273, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33576711

RESUMO

Human gut microbiota contributes to host nutrition and metabolism, sustains intestinal cell proliferation and differentiation, and modulates host immune system. The alterations in their composition lead to severe gut disorders, including inflammatory bowel disease (IBD) or inflammatory bowel syndrome (IBS). IBD including ulcerative colitis (UC) and Crohn's disease (CD) are gamut of chronic inflammatory disorders of gut, mediated by complex interrelations among genetic, environmental, and internal factors. IBD has debateable aetiology, however in recent years, exploring the central role of a tri-directional relationship between gut microbiota, mucosal immune system, and intestinal epithelium in pathogenesis is getting the most attention. Increasing incidences and early onset explains the exponential rise in IBD burden on health-care systems. Industrialization, hypersensitivity to allergens, lifestyle, hygiene hypothesis, loss of intestinal worms, and gut microbial composition, explains this shifted rise. Hitherto, the interventions modulating gut microbiota composition, microfluidics-based in vitro gastrointestinal models, non-allergic functional foods, nutraceuticals, and faecal microbiota transplantation (FMT) from healthy donors are some of the futuristic approaches for the disease management.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/microbiologia , Animais , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Humanos , Sistema Imunitário/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia
9.
Toxicol Appl Pharmacol ; 431: 115741, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34619158

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) can induce small-intestinal injuries through inhibition of prostaglandin synthesis. Gut has an important role in building and maintaining the barriers to avoid the luminal gut microbiota from invading the host, and cytoskeleton plays a crucial role in the maintenance of cellular barrier. The recent advances suggest a bi-directional interaction between the drugs and gut microbiota, where gut microbes can metabolize the drugs, and in response drugs can alter the composition of gut microbiota. In the present study, we evaluated the effect of diclofenac on rat gut, when co-administrated with either Yersinia enterocolitica strain 8081 (an enteropathogen) or Lactobacillus fermentum strain 9338 (a probiotic). The LC-MS/MS based label-free quantitation of rat gut proteins revealed 51.38% up-regulated, 48.62% down-regulated in diclofenac-Y. enterocolitica strain 8081 (D*Y), and 74.31% up-regulated, 25.69% down-regulated in diclofenac-L. fermentum strain 9338 (D*L) experiments. The identified proteins belonged to cytoskeleton, metabolism, heme biosynthesis and binding, stress response, apoptosis and redox homeostasis, immune and inflammatory response, and detoxification and antioxidant defence. Further, the histopathological and biochemical analysis indicated more pronounced histological alterations and oxidative stress (enhanced malonaldehyde and altered antioxidant levels) in D*Y rats than D*L rats, compared to control rats. Elevated plus maze (EPM) test performed to determine the behavioral changes, suggested increased anxiety in D*Y rats than D*L rats, compared to control rats. These results together suggest the differential role of either bacterium in biotransformation of diclofenac, and inflammatory and cellular redox response.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Comportamento Animal/efeitos dos fármacos , Diclofenaco/toxicidade , Microbioma Gastrointestinal , Intestinos/efeitos dos fármacos , Limosilactobacillus fermentum/metabolismo , Probióticos , Proteoma/efeitos dos fármacos , Yersinia enterocolitica/metabolismo , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Biotransformação , Diclofenaco/metabolismo , Disbiose , Teste de Labirinto em Cruz Elevado , Mediadores da Inflamação/metabolismo , Intestinos/metabolismo , Intestinos/microbiologia , Intestinos/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Mapas de Interação de Proteínas , Proteômica , Ratos Wistar , Transdução de Sinais
10.
Cytokine ; 131: 155115, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32403005

RESUMO

Newcastle disease (ND) is prevalent among the domesticated and the wild birds and is caused by the avian paramyxovirus serotype-I (APMV-I). It is commonly known to affect chicken, pheasant, ostrich, pigeon and waterfowl. Depending on the virulence, the velogenic NDV strains cause severe respiratory and nervous disorders with a high mortality rate. The live and killed vaccines are available for the prevention of infection in the market, but the drug for the treatment is not available. Nitazoxanide (NTZ), a member of thiazolides, is an antiparasitic drug. In the present study, the effect of NTZ on the NDV replication was explored. The experiments were conducted in chicken fibroblast cells (DF-1), PBMC, embryonated chicken eggs, and two-week old chickens. The inhibition of the NDV was observed upon post-treatment of NTZ at a concentration of ~12.5 µM. Cytokine profiling of the DF-1, PBMC, and chicken embryonic tissue treated with NTZ revealed significant upregulation in all the cytokines studied except for IL-1ß in DF-1 cells. It is plausible that NTZ is involved in causing immune-modulatory effects in poultry. NTZ treatment in two weeks old chicken showed significant reduction in NDV replication in trachea, and lungs, respectively, at 72 h post-infection. Encouraging results from the present study warrants repurposing NTZ as a drug for the treatment of viral infection in poultry. It will also pave the way towards understanding of similar effect against other animal pathogens.


Assuntos
Antivirais/uso terapêutico , Citocinas/metabolismo , Doença de Newcastle/tratamento farmacológico , Vírus da Doença de Newcastle/efeitos dos fármacos , Nitrocompostos/uso terapêutico , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/virologia , Tiazóis/uso terapêutico , Animais , Antivirais/farmacologia , Antivirais/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Galinhas , Citocinas/genética , Expressão Gênica/efeitos dos fármacos , Doença de Newcastle/imunologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/metabolismo , Vírus da Doença de Newcastle/fisiologia , Nitrocompostos/farmacologia , Nitrocompostos/toxicidade , Doenças das Aves Domésticas/imunologia , Tiazóis/farmacologia , Tiazóis/toxicidade , Replicação Viral/efeitos dos fármacos
11.
ACS Appl Bio Mater ; 7(3): 1831-1841, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38427704

RESUMO

Since the finding of nephrogenic systemic fibrosis (NFS) in patients with renal impairment and the long-term accumulation of Gd(III) ions in the central nervous system, the search for nongadolinium ion-based MRI contrast agents made of nutrient metal ions has drawn paramount attention. In this context, the development of Mn(II)-based MRI contrast agents has been a subject of interest for the last few decades. Herein, we report a pentadentate ligand (Li2[BenzPic2]) composed of two picolinate moieties and a rigid 1,2,3,4-tetrahydroquinazoline unit and the corresponding bis(aquated) Mn(II) complex (Complex 1). The complex exhibited high thermodynamic stability (log Kcond = 11.62) and kinetic inertness similar to that of the clinically approved Gd(III)-based contrast agent Magnevist. Complex 1 exerted longitudinal relaxivity (r1) of 5.32 mM-1 s-1 at 1.41 T, 37 °C, pH 7.4, and it increased by 3.6-fold in the presence of serum albumin protein, confirming a substantial rigidifying interaction (albumin association constant KA = 1.66 × 103 M-1) between the protein and the amphiphilic (log P = -0.45) contrast agent. An intravenous dose of 0.08 mmol/kg in a healthy mouse, excellent MRI signal intensity enhancement in the vasculature of the mouse liver, and brightened images of the gallbladder, kidney, and liver were realized.


Assuntos
Meios de Contraste , Gadolínio DTPA , Humanos , Animais , Camundongos , Albuminas , Imageamento por Ressonância Magnética , Íons
12.
Int J Antimicrob Agents ; 64(4): 107289, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084575

RESUMO

BACKGROUND: Escherichia coli is a Gram-negative commensal of human gut. Surprisingly, the role of E. coli in the pathogenesis of ulcerative colitis (UC) has not been explored until now. METHODS: Human gut microbiota composition and meta-gut resistome were evaluated using metagenomics. Antibiotic susceptibility of E. coli isolates against different class of antibiotics was investigated. Further, the genome sequence analysis of E. coli isolates was performed to gain insight into the antimicrobial resistance (AMR) mechanism and virulence factors. Gut proteome of UC and non-UC was examined to understand the effect of resistant bacteria on host physiology. RESULTS: In UC patients, meta-gut resistome was found to be dominated by AMR genes (829) compared to healthy controls (HC) [518]. The metagenome study revealed a higher prevalence of AMR genes in the rural population (378 in HC; 607 in UC) compared to the urban (340 in HC; 578 in UC). Approximately, 40% of all E. coli isolates were multi-drug resistant (MDR), with higher prevalence in UC (43.75%) compared to HC (33.33%). Up-regulated expression of antimicrobial human proteins (lactotransferrin, azurocidin, cathepsin G, neutrophil elastase, and neutrophil defensin 3) and inflammatory mediator (Protein S100-A9 and Protein S100-A8) suggest microbial infection in UC gut. CONCLUSIONS: In addition to the conventional culturomics method, a multi-omics strategy provides deeper insights into the disease etiology, emergence of MDR pathobionts, and their roles in the disruption of the healthy gut environment in UC patients.


Assuntos
Antibacterianos , Colite Ulcerativa , Escherichia coli , Microbioma Gastrointestinal , Humanos , Colite Ulcerativa/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Masculino , Infecções por Escherichia coli/microbiologia , Adulto , Feminino , Fatores de Virulência/genética , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Metagenômica
13.
J Clin Monit Comput ; 27(2): 179-85, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23179018

RESUMO

To determine the use of photoplethysmography (PPG) as a reliable marker for identifying respiratory apnea based on time-frequency features with support vector machine (SVM) classifier. The PPG signals were acquired from 40 healthy subjects with the help of a simple, non-invasive experimental setup under normal and induced apnea conditions. Artifact free segments were selected and baseline and amplitude variabilities were derived from each recording. Frequency spectrum analysis was then applied to study the power distribution in the low frequency (0.04-0.15 Hz) and high frequency (0.15-0.40 Hz) bands as a result of respiratory pattern changes. Support vector machine (SVM) learning algorithm was used to distinguish between the normal and apnea waveforms using different time-frequency features. The algorithm was trained and tested (780 and 500 samples respectively) and all the simulations were carried out using linear kernel function. Classification accuracy of 97.22 % was obtained for the combination of power ratio and reflection index features using SVM classifier. The pilot study indicates that PPG can be used as a cost effective diagnostic tool for detecting respiratory apnea using a simple, robust and non-invasive experimental setup. The ease of application and conclusive results has proved that such a system can be further developed for use in real-time monitoring under critical care conditions.


Assuntos
Fotopletismografia/métodos , Síndromes da Apneia do Sono/diagnóstico , Síndromes da Apneia do Sono/fisiopatologia , Máquina de Vetores de Suporte , Adolescente , Adulto , Algoritmos , Artefatos , Feminino , Humanos , Masculino , Monitorização Fisiológica/métodos , Projetos Piloto , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Adulto Jovem
14.
Methods Mol Biol ; 2610: 109-127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36534286

RESUMO

Influenza A virus H1N1, a respiratory virus transmitted via droplets and responsible for the global pandemic in 2009, belongs to the Orthomyxoviridae family, a single-negative-stranded RNA. It possesses glycoprotein spikes neuraminidase (NA), hemagglutinin (HA), and a matrix protein named M2. The Covid-19 pandemic affected the world population belongs to the respiratory virus category is currently mutating, this can also be observed in the case of H1N1 influenza A virus. Mutations in H1N1 can enhance the viral capacity which can lead to another pandemic. This virus affects children below 5 years, pregnant women, old age people, and immunocompromised individuals due to its high viral capacity. Its early detection is necessary for the patient's recovery time. In this book chapter, we mainly focus on the detection methods for H1N1, from traditional ones to the most advance including biosensors, RT-LAMP, multi-fluorescent PCR.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Gravidez , Criança , Humanos , Feminino , Vírus da Influenza A Subtipo H1N1/genética , Pandemias , Sensibilidade e Especificidade , COVID-19/epidemiologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/genética , Neuraminidase/genética , RNA Viral/genética
15.
Virus Res ; 323: 198955, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36202293

RESUMO

Japanese encephalitis virus (JEV) is the leading causative agent of encephalitis and its associated mortality among children. JEV modulates host cell machinery for its advantage, such as oxidative damage which subsequently leads to stress responsive pathways. The present study analyzes new series of dinitroaryl substituted derivatives (1a-1f), containing pyrazole moiety and explores its potential ensuing anti-JEV activity. Out of all synthesized derivatives, compounds 1b and 1f were selected based on minimal cytotoxicity. In vitro inhibition of more than 70% and 90% were observed with compounds 1b and 1f, respectively, in neuronal cells. Dose-response analyses highlighted 1f exhibiting better antiviral activity than 1b. The mice treated with compound 1b or 1f did not show any noticeable toxicity at a dose of 100mg/kg/day when administered intraperitoneally till 96th h. Inhibition of up to 41% and 70% JEV mRNA in spleen and 33% to 43% in brain tissue was observed with compounds 1b and 1f, respectively. Both the compounds suppressed JEV induced ROS generation by up-regulating the NQO1 and HO-1 proteins. Our result suggests the interlocked positive feedback loops of NRF2-SQSTM1 signaling pathway to be regulated by the synthesized compounds. The potential of these compounds can be further tested for broad-spectrum antiviral effects with other flaviviruses in the path towards the development of therapeutics.

16.
J Mater Chem B ; 11(34): 8251-8261, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37575086

RESUMO

Type-1 and type-2 diabetes mellitus are metabolic disorders governed by the functional efficiency of pancreatic ß-cells. The activities of the cells toward insulin production, storage, and secretion are accompanied by Zn(II) ions. Thus, for non-invasive pathology of the cell, developing Zn(II) ion-responsive MRI-contrast agents has earned considerable interest. In this report, we have synthesized a seven-coordinate, mono(aquated) Mn(II) complex (1), which is impregnated within a porous silica nanosphere of size 13.2 nm to engender the Mn(II)-based MRI contrast agent, complex 1@SiO2NP. The surface functionalization of the nanosphere by the Py2Pic organic moiety for the selective binding of Zn(II)-ions yields complex 1@SiO2-Py2PicNP, which exhibits r1 = 13.19 mM-1 s-1. The relaxivity value elevates to 20.38 mM-1 s-1 in the presence of 0.6 mM BSA protein at pH 7.4. Gratifyingly, r1 increases linearly with the increase of Zn(II) ion concentration and reaches 39.01 mM-1 s-1 in the presence of a 40 fold excess of the ions. Thus, Zn(II)-responsive contrast enhancement in vivo is envisaged by employing the nanoparticle. Indeed, a contrast enhancement in the pancreas is observed when complex 1@SiO2-Py2PicNP and a glucose stimulus are administered in fasted healthy C57BL/6 mice at 7 T.


Assuntos
Nanopartículas , Dióxido de Silício , Camundongos , Animais , Dióxido de Silício/metabolismo , Meios de Contraste/metabolismo , Porosidade , Camundongos Endogâmicos C57BL , Imageamento por Ressonância Magnética/métodos , Pâncreas/metabolismo , Zinco/metabolismo , Íons/metabolismo
17.
3 Biotech ; 12(6): 141, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35664651

RESUMO

The recent emergence of respiratory viruses especially COVID-19 and swine flu has underscored the need for robust and bedside detection methods. Swine flu virus is a very infectious virus of the respiratory system. Timely detection of this virus with high specificity and sensitivity is crucial for reducing morbidity as well as mortality. Cloning of gene segments into a non-infectious agent helps in the development of detection methods, vaccine development, and other studies. In this study, cloning was used to develop a biosensor for H1N1 pdm09 detection. A segment of the hemaglutinin gene was cloned in a vector and characterized with the help of colony touch PCR and blue-white screening. The recombinant plasmid was extracted, and the gene segment was confirmed with the help of HA-specific primers. A 5' amine group-attached hemagglutinin (HA) gene-specific DNA probe was immobilized on the working gold electrode surface to make a quick, specific, reliable, and sensitive detection method for H1N1pdm09 virus in human nasal swab samples. The HA probe was immobilized on the cysteine applied gold electrode of the screen-printed electrode through 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Differential pulse voltammetry was performed with the help of methylene blue, which is a redox indicator for the detection of single-stranded cloned HA gene segment. The developed sensor depicted high sensitivity for the H1N1 influenza virus with a detection limit of 0.6 ng ssDNA/6 µl of the cloned HA sample. Specificity was also checked using H3N2 virus, N. meningitides, influenza A and positive H1N1pdm09 samples.

18.
Sens Int ; 3: 100197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935464

RESUMO

Covid-19 is a dreadful pandemic of the 21st century that has created fear among people, affected the whole world, and taken thousands of lives. It infects the respiratory system and causes flu-type symptoms. According to the WHO reports, 2,082,745 deaths and 96,267,473 confirmed cases were perceived all around the globe till January 22, 2021. The significant roots of transmission are inhalation and direct contact with the infected surface. Its incubation period is 2-14 days and remains asymptomatic in most people. However, no treatment and vaccine are available for the people, so preventive measures like social distancing, wearing personal protective equipment (PPE), and frequent hand-washing are the practical and only options for cure. It has affected every sector of the world, whether it is trade or health all around the world. There is high demand for diagnostic tools as high-scale and expeditious testing is crucial for controlling disease spread; thus, detection methods play an essential role. Like flu, Covid-19 is also detected through RT-PCR, as the World Health Organization (WHO) suggested, but it is time taking and expensive method that many countries cannot afford. A vaccine is a crucial aspect of eradicating disease, and for SARS-CoV-2), plasma therapy and antibiotics therapy are used in the early spreading phase. The later stage involves forming a vaccine based on spike protein, N-protein, and whole-viral antigen that effectively immunizes the population worldwide until herd immunity can be achieved. In this review, we will discuss all possible and developed techniques for identifying SARS-CoV-2 and make a comparison of their specificity, selectivity, and cost; thus, we choose an appropriate method for fast, reliable, and pocket-friendly detection.

19.
3 Biotech ; 11(2): 87, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33495723

RESUMO

The influenza virus is classified into four types A, B, C, and D, but type A and B are responsible for major illnesses in people with influenza A being the only virus responsible for flu pandemics due to the presence of two surface proteins called hemagglutinin (H) and neuraminidase (N) on the virus. The two subtypes of influenza A virus, H1N1 and H3N2, have been known to cause many flu pandemics. Both subtypes change genetically and antigenically to produce variants (clades and subclades, also know as groups and subgroups). H3N2 tends to change rapidly, both genetically and antigenically whereas that of H1N1 generally tends to have smaller changes. Influenza A (H3N2) viruses have evolved to form many separate, genetically different clades that continue to co-circulate. Influenza A(H3N2) viruses have caused significant deaths as per WHO report. The review describes methods for detection of influenza A(H3N2) viruses by conventional serological methods as well as the advanced methods of molecular biology and biosensors. All these methods are based on different parameters and have different targets but the goal is to improve specificity and increase sensitivity. Amongst the molecular methods, real-time polymerase chain reaction (RT-PCR) is considered a gold standard test due to its many advantages whereas a number of other molecular methods are time-consuming, complex to perform or lack specificity. The review also considers bio-sensing methods for simple, rapid, highly sensitive, and specific detection of H3N2. The classification and principle of various H3N2 biosensors are also discussed.

20.
J Nanosci Nanotechnol ; 21(6): 3524-3530, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34739803

RESUMO

A highly sensitive novel amperometric genosensor has been developed for rapid detection of canine parvovirus (CPV) DNA in fecal swabs of naturally infected dogs. The genosensor is based on a single stranded 5°-thiolated (SH) DNA probe complementary to VP1/VP2 gene of canine parvo vaccine strain, immobilized covalently on a polycrystalline gold (Au) electrode. The genosensor has been characterized by scanning electron microscopy (SEM), Fourier Transform Infra-Red Spectroscopy (FTIR), cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectra (EIS). The ssDNA-SH/Au electrode was hybridized with single stranded target DNA (ss T-DNA) in the sample. This hybridization was detected by reduction in current, generated by interaction of methylene blue (MB) with free guanine of ssDNA. The current response of genosensor was determined by CV, DPV and EIS. The sensor detected single stranded genomic DNA (ss g-DNA) isolated from vaccine strain of CPV in the range, 1.0-12.0 ng/µl at 25 °C for 10 min. Subsequently, the genobiosensor was applied for detection of CPV viral DNA in fecal swabs of naturally infected dogs. The limit of detection (LOD) of the sensor was 1.0 ng/µl of fecal viral DNA. To the best of our knowledge, this is the first report on development and application of amperometric biosensor for rapid, sensitive, specific point of care detection of viral DNA of CPV in feces.


Assuntos
Técnicas Biossensoriais , Parvovirus Canino , Animais , DNA Viral , Cães , Técnicas Eletroquímicas , Fezes , Ouro , Hibridização de Ácido Nucleico , Parvovirus Canino/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA