Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Appl Microbiol Biotechnol ; 106(18): 6059-6075, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35948851

RESUMO

One of the critical steps in lignocellulosic deconstruction is the hydrolysis of crystalline cellulose by cellulases. Endoglucanases initially facilitate the breakdown of cellulose in lignocellulosic biomass and are further aided by other cellulases to produce fermentable sugars. Furthermore, if the endoglucanase is processive, it can adsorb to the smooth surface of crystalline cellulose and release soluble sugars during repeated cycles of catalysis before dissociating. Most glycoside hydrolase family 9 (GH9) endoglucanases have catalytic domains linked to a CBM (carbohydrate-binding module) (mostly CBM3) and present the second-largest cellulase family after GH5. GH9 endoglucanases are relatively less characterized. Bacillus licheniformis is a mesophilic soil bacterium containing many glycoside hydrolase (GH) enzymes. We identified an endoglucanase gene, gh9A, encoding the GH9 family enzyme H1AD14 in B. licheniformis and cloned and overexpressed H1AD14 in Escherichia coli. The purified H1AD14 exhibited very high enzymatic activity on endoglucanase substrates, such as ß-glucan, lichenan, Avicel, CMC-Na (sodium carboxymethyl cellulose) and PASC (phosphoric acid swollen cellulose), across a wide pH range. The enzyme is tolerant to 2 M sodium chloride and retains 74% specific activity on CMC after 10 days, the highest amongst the reported GH9 endoglucanases. The full-length H1AD14 is a processive endoglucanase and efficiently saccharified sugarcane bagasse. The deletion of the CBM reduces the catalytic activity and processivity. The results add to the sparse knowledge of GH9 endoglucanases and offer the possibility of characterizing and engineering additional enzymes from B. licheniformis toward developing a cellulase cocktail for improved biomass deconstruction. KEY POINTS: • H1AD14 is a highly active and processive GH9 endoglucanase from B. licheniformis. • H1AD14 is thermostable and has a very long half-life. • H1AD14 showed higher saccharification efficiency than commercial endoglucanase.


Assuntos
Bacillus licheniformis , Celulase , Saccharum , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Celulase/metabolismo , Celulose/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosídeo Hidrolases/metabolismo , Hidrólise , Saccharum/metabolismo , Açúcares
2.
Chem Eng J ; 405: 126893, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32901196

RESUMO

The unprecedented global spread of the severe acute respiratory syndrome (SARS) caused by SARS-CoV-2 is depicting the distressing pandemic consequence on human health, economy as well as ecosystem services. So far novel coronavirus (CoV) outbreaks were associated with SARS-CoV-2 (2019), middle east respiratory syndrome coronavirus (MERS-CoV, 2012), and SARS-CoV-1 (2003) events. CoV relates to the enveloped family of Betacoronavirus (ßCoV) with positive-sense single-stranded RNA (+ssRNA). Knowing well the persistence, transmission, and spread of SARS-CoV-2 through proximity, the faecal-oral route is now emerging as a major environmental concern to community transmission. The replication and persistence of CoV in the gastrointestinal (GI) tract and shedding through stools is indicating a potential transmission route to the environment settings. Despite of the evidence, based on fewer reports on SARS-CoV-2 occurrence and persistence in wastewater/sewage/water, the transmission of the infective virus to the community is yet to be established. In this realm, this communication attempted to review the possible influx route of the enteric enveloped viral transmission in the environmental settings with reference to its occurrence, persistence, detection, and inactivation based on the published literature so far. The possibilities of airborne transmission through enteric virus-laden aerosols, environmental factors that may influence the viral transmission, and disinfection methods (conventional and emerging) as well as the inactivation mechanism with reference to the enveloped virus were reviewed. The need for wastewater epidemiology (WBE) studies for surveillance as well as for early warning signal was elaborated. This communication will provide a basis to understand the SARS-CoV-2 as well as other viruses in the context of the environmental engineering perspective to design effective strategies to counter the enteric virus transmission and also serves as a working paper for researchers, policy makers and regulators.

3.
Phys Chem Chem Phys ; 21(20): 10761-10772, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31086930

RESUMO

This study describes and evaluates a dynamic computational model for a two chamber microbial electrosynthesis (MES) system. The analysis is based on redox mediators and a two population model, describing bioelectrochemical kinetics at both anode and cathode. Mass transfer rates of the substrate and bacteria in the two chambers are combined with the kinetics and Ohm's law to derive an expression for the cell current density. The effect of operational parameters such as initial substrate concentration at the anode and cathode and the operation cycle time on MES performance is evaluated in terms of product formation rate, substrate consumption and coulombic efficiency (CE). For a fixed operation cycle time of 3 or 4 days, the anode and cathode initial substrate concentrations show linear relationship with product formation rate; however MES operation with a 2 day cycle time shows a more complex behaviour, with acetic acid production rates reaching a plateau and even a slight decrease at higher concentrations of the two substrates. It is also shown that there is a trade-off between product formation rate and substrate consumption and CE. MES performance for operation with cycle time being controlled by substrate consumption is also described. Results from the analysis demonstrate the interdependence of the system parameters and highlight the importance of multi-objective system optimization based on targeted end-use.


Assuntos
Bactérias/metabolismo , Fontes de Energia Bioelétrica , Eletroquímica/instrumentação , Reatores Biológicos , Eletrodos
4.
Int J Mol Sci ; 16(5): 9540-56, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25927577

RESUMO

Harnessing hydrogen competently through wastewater treatment using a particular class of biocatalyst is indeed a challenging issue. Therefore, biohydrogen potential of real-field wastewater was evaluated by hybrid fermentative process in a single-stage process. The cumulative hydrogen production (CHP) was observed to be higher with distillery wastewater (271 mL) than with dairy wastewater (248 mL). Besides H2 production, the hybrid process was found to be effective in wastewater treatment. The chemical oxygen demand (COD) removal efficiency was found higher in distillery wastewater (56%) than in dairy wastewater (45%). Co-culturing photo-bacterial flora assisted in removal of volatile fatty acids (VFA) wherein 63% in distillery wastewater and 68% in case of dairy wastewater. Voltammograms illustrated dominant reduction current and low cathodic Tafel slopes supported H2 production. Overall, the augmented dark-photo fermentation system (ADPFS) showed better performance than the control dark fermentation system (DFS). This kind of holistic approach is explicitly viable for practical scale-up operation.


Assuntos
Análise da Demanda Biológica de Oxigênio , Fermentação , Hidrogênio/química , Oxirredução , Biodegradação Ambiental , Biomassa , Reatores Biológicos , Cromatografia Líquida de Alta Pressão , Indústria de Laticínios , Ácidos Graxos/química , Ácidos Graxos Voláteis/química , Concentração de Íons de Hidrogênio , Resíduos Industriais , Modelos Químicos , Pigmentação , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/química , Purificação da Água/métodos
5.
Sci Total Environ ; 868: 161419, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36623646

RESUMO

The study aimed to evaluate the community-wide antimicrobial resistance (AMR) profile of an urban setting using the culture-independent wastewater-based epidemiological surveillance (WBE) approach. The domestic wastewater sample was collected at the converging point of the drain connecting the Sewage Treatment Plant (STP). The collected water sample was evaluated for the presence of 125 antibiotic resistance genes (ARGs) and 13 mobile genetic elements (MGEs, 5 integrons and 8 transposons). Antibiotic residues and the composition of bacterial communities were also examined. Community's sewage showed a diverse resistance pattern, with the positive detection of targeted ARGs, notably aph, aadA1, and strB being particularly abundant. Resistance to aminoglycoside and trimethoprim classes was prevalent, followed by chloramphenicol, sulfonamide, and ß-lactams. According to the microbial diversity assessment, Proteobacteria, Bacteroidetes, Firmicutes, and Chloroflexi were abundant phyla observed, while Helicobacteraceae, Pseudomonadaceae, and Moraxellaceae were prevalent families. The study provided comprehensive baseline information of ARGs on a community scale and will be of use for ARG prevention and management.


Assuntos
Antibacterianos , Águas Residuárias , Humanos , Antibacterianos/farmacologia , Esgotos/microbiologia , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética
6.
Chemosphere ; 328: 138491, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36963586

RESUMO

The functional role of lactate (HLac), as a co-substrate along with glucose (Glu) as well as an electron donor for the synthesis of caproic acid (HCa), a medium chain fatty acid (MCFAs) was studied. A varied HLac and Glu ratios were thus investigated in fed-batch anaerobic reactors (R1-R5) operated at pH 6 with a heat-treated anaerobic consortium. R1 and R5 were noted as controls and operated with sole Glu and HLac, respectively. Strategically, ethanol (HEth) was additionally supplemented as co-electron donor after the production of short chain carboxylic acids (SCCAs) for chain elongation in all the reactors. The reactor operated with HLac and Glu in a ratio of 0.25:0.75 (1.25 g/L (HLac) and 3.75 g/L (Glu)) showed the highest HCa production of 1.86 g/L. R5 operated with solely HLac yielded propionic acid (HPr) as the major product which further led to the higher valeric acid (HVa) production of 1.1 g/L within the reactor. Butyric acid (HBu) was observed in R1, which used Glu as carbon source alone indicating the importance of HLac as electron co-donor. Clostridium observed as the most dominant genera in shotgun metagenome sequencing in R2 and R3, the reactors that produced the highest HCa in comparison to other studied reactors. The study thus provided insight into the importance of substrate and electron donor and their supplementation strategies during the production of MCFAs.


Assuntos
Caproatos , Ácido Láctico , Reatores Biológicos , Glucose , Ácidos Graxos , Fermentação
7.
Microb Biotechnol ; 16(2): 184-189, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36691741

RESUMO

Biogenic waste (solid/liquid/gaseous) utilization in biological processes has disruptive potential of inclining towards carbon neutrality, while producing diverse products output. Anaerobic fermentation (methanogenesis and acidogenesis) routes are crucial bioprocesses for production of various renewable chemicals (carboxylate platform/organic acids, short/medium chain alcohols, aldehydes, biopolymers) and fuels (methane, hydrogen, hythane, biodiesel and electricity), while individual operations posing process limitations on their conversion efficiency. Advantageous benefit of using the individual bioprocess technicalities is of utmost importance in the context of sustainability to conceptualize and execute integrated waste biorefinery. The opinion article intends to document/familiarize the waste-fed biorefinery potential with application of hybrid advancements towards multiple product/energy/renewable chemical spectrum leading to carbon neutrality bioprocesses. Unique and notable challenges with diverse process integrations along with electrochemical/interspecies-redox metabolites-materials synergy/enzymatic interventions are specifically emphasized on application-oriented waste feedstock potential towards achieving sustainability.


Assuntos
Metabolismo dos Carboidratos , Ácidos Carboxílicos , Fermentação , Biopolímeros , Carbono , Biocombustíveis
8.
Bioresour Technol ; 382: 129063, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37080439

RESUMO

Increasing global energy consumption and depleting fossil-fuel reserves prompted the search for green alternatives. This study focuses on conversion of waste agar using different acids/alkalis (0.5% and 1%) as catalysts under varied temperature and time towards galactose (Gal), 5-hydroxymethylfurfural (HMF) and levulinic acid (LA) production in sequential reactions. The optimized process for agar depolymerisation was achieved using 1% acid (H2SO4/HCl) catalysed conditions with a maximum of 11 g/L Gal yield (121 °C; 15 min). Increase in temperature (150 °C) and time (180 min) with 1% HCl/H2SO4 catalyst resulted in improved LA production along with Gal and HMF. The hydrolysis process was optimised for the selective production of LA (10 g/L at 175 °C; 180 min). Further, galactose-rich hydrolysates were assessed for bioethanol production using Saccharomyces cerevisiae that resulted in 3 g/L ethanol. Thus, the study comprehensively demonstrates waste agar utilization to yield biochemicals/fuels in a circular bio-based economy approach.


Assuntos
Galactose , Saccharomyces cerevisiae , Fermentação , Ágar , Ácidos Levulínicos , Hidrólise
9.
Bioresour Technol ; 382: 129031, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37037331

RESUMO

The presence of 2,4-dichlorophenoxyacetic acid (2,4-D), an organochlorine herbicide, in the environment has raised public concern as it poses hazard to both humans and the ecosystem. Three potential strains having the capability to degrade 2,4-D were isolated from on site agricultural soil and identified as Arthrobacter sp. SVMIICT25, Sphingomonas sp. SVMIICT11 and Stenotrophomonas sp. SVMIICT13. Over 12 days of incubation, 81-90% of 100 mg/L of 2,4-D degradation was observed at 2% inoculum. A shorter lag phase with 80% of degradation efficiency was observed within 5 days when the inoculum size was increased to 10%. Six microbial consortia were prepared by combining the isolates along with in-house strains, Bacillus sp. and Pseudomonas sp. Consortia R3 (Arthrobacter sp. + Sphingomonas sp.), operated with 10% of inoculum, showed 85-90% degradation within 4 days and 98-100% in 9 days. Further, targeted exo-metabolite analysis confirmed the presence and catabolism of intermediate 2,4-dichlorophenol and 4-chlorophenol compounds.


Assuntos
Arthrobacter , Herbicidas , Praguicidas , Poluentes do Solo , Humanos , Ecossistema , Biodegradação Ambiental , Praguicidas/metabolismo , Consórcios Microbianos , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Arthrobacter/metabolismo , Ácido 2,4-Diclorofenoxiacético/metabolismo , Microbiologia do Solo
10.
Micromachines (Basel) ; 13(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35888797

RESUMO

Microbial electrosynthesis system (MES; single-chambered) was fabricated and evaluated with carbon cloth/graphite as a working/counter electrode employing an enriched microbiome. Continuous syngas sparging (at working electrode; WE) enabled the growth of endo electrogenic bacteria by availing the inorganic carbon source. Applied potential (-0.5 V) on the working electrode facilitated the reduction in syngas, leading to the synthesis of fatty acids and alcohols. The higher acetic acid titer of 3.8 g/L and ethanol concentration of 0.2 g/L was observed at an active microbial metabolic state, evidencing the shift in metabolism from acetogenic to solventogenesis. Voltammograms evidenced distinct redox species with low charge transfer resistance (Rct; Nyquist impedance). Reductive catalytic current (-0.02 mA) enabled the charge transfer efficiency of the cathodes favoring syngas conversion to products. The surface morphology of carbon cloth and system-designed conditions favored the growth of electrochemically active consortia. Metagenomic analysis revealed the enrichment of phylum/class with Actinobacteria, Firmicutes/Clostridia and Bacilli, which accounts for the syngas fermentation through suitable gene loci.

11.
Front Bioeng Biotechnol ; 10: 964070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213054

RESUMO

A closed loop algal-biorefinery was designed based on a three-stage integration of dairy wastewater (DWW) treatment, hydrothermal liquefaction (HTL) of defatted algal biomass, and acidogenic process in a semi-synthetic framework. Initially, Coelestrella sp SVMIICT5 was grown in a 5 L photo-bioreactor and scaled up to a 50 L flat-panel photo-bioreactor using DWW. The microalgal growth showed higher photosynthetic efficiency, resulting in a biomass growth of 3.2 g/L of DCW with 87% treatment efficiency. The biomolecular composition showed 26% lipids with a good fatty acid profile (C12-C21) as well as carbohydrate (24.9%) and protein (31.8%) content. In the second stage, the de-oiled algal biomass was valorized via HTL at various temperatures (150°C, 200°, and 250°C) and reaction atmospheres (N2 and H2). Among these, the 250°C (H2) condition showed a 52% bio-crude fraction and an HHV of ∼29.47 MJ/kg (bio-oil) with a saturated hydrocarbon content of 64.3% that could be further upgraded to jet fuels. The energy recovery (73.01%) and elemental enrichment (carbon; 65.67%) were relatively greater in H2 compared to N2 conditions. Finally, dark fermentation of the complex-structured HTL-AF stream resulted in a total bio-H2 production of 231 ml/g of TOC with a 63% treatment efficiency. Life cycle analysis (LCA) was also performed for the mid-point and damage categories to assess the sustainability of the integrated process. Thus, the results of this study demonstrated comprehensive wastewater treatment and valorization of de-oiled algal biomass for chemical/fuel intermediates in the biorefinery context by low-carbon processes.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35270390

RESUMO

Wastewater-based epidemiology (WBE) is emerging as a potential approach to study the infection dynamics of SARS-CoV-2 at a community level. Periodic sewage surveillance can act as an indicative tool to predict the early surge of pandemic within the community and understand the dynamics of infection and, thereby, facilitates for proper healthcare management. In this study, we performed a long-term epidemiological surveillance to assess the SARS-CoV-2 spread in domestic sewage over one year (July 2020 to August 2021) by adopting longitudinal sampling to represent a selected community (~2.5 lakhs population). Results indicated temporal dynamics in the viral load. A consistent amount of viral load was observed during the months from July 2020 to November 2020, suggesting a higher spread of the viral infection among the community, followed by a decrease in the subsequent two months (December 2020 and January 2021). A marginal increase was observed during February 2021, hinting at the onset of the second wave (from March 2021) that reached it speak in April 2021. Dynamics of the community infection rates were calculated based on the viral gene copies to assess the severity of COVID-19 spread. With the ability to predict the infection spread, longitudinal WBE studies also offer the prospect of zoning specific areas based on the infection rates. Zoning of the selected community based on the infection rates assists health management to plan and manage the infection in an effective way. WBE promotes clinical inspection with simultaneous disease detection and management, in addition to an advance warning signal to anticipate outbreaks, with respect to the slated community/zones, to tackle, prepare for and manage the pandemic.


Assuntos
COVID-19 , Águas Residuárias , COVID-19/epidemiologia , Humanos , SARS-CoV-2 , Esgotos , Vigilância Epidemiológica Baseada em Águas Residuárias
13.
Sci Total Environ ; 806(Pt 1): 150312, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844320

RESUMO

The single bioprocess approach has certain limitations in terms of process efficiency, product synthesis, and effective resource utilization. Integrated or combined bioprocessing maximizes resource recovery and creates a novel platform to establish sustainable biorefineries. Anaerobic fermentation (AF) is a well-established process for the transformation of organic waste into biogas; conversely, biogas CO2 separation is a challenging and expensive process. Biological fixation of CO2 for succinic acid (SA) mitigates CO2 separation issues and produces commercially important renewable chemicals. Additionally, utilizing digestate rich in volatile fatty acid (VFA) to produce medium-chain fatty acids (MCFAs) creates a novel integrated platform by utilizing residual organic metabolites. The present review encapsulates the advantages and limitations of AF along with biogas CO2 fixation for SA and digestate rich in VFA utilization for MCFA in a closed-loop approach. Biomethane and biohydrogen processes CO2 utilization for SA production is cohesively deliberated along with the role of biohydrogen as an alternative reducing agent to augment SA yields. Similarly, MCFA production using VFA as a substrate and functional role of electron donors namely ethanol, lactate, and hydrogen are comprehensively discussed. A road map to establish the fermentative biorefinery approach in the framework of AF integrated sustainable bioprocess development is deliberated along with limitations and factors influencing for techno-economic analysis. The discussed integrated approach significantly contributes to promote the circular bioeconomy by establishing carbon-neutral processes in accord with sustainable development goals.


Assuntos
Biocombustíveis , Hidrogênio , Anaerobiose , Ácidos Graxos Voláteis , Fermentação , Hidrogênio/análise
14.
J Appl Microbiol ; 110(3): 666-74, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21219553

RESUMO

AIMS: To study the bioelectrochemical behaviour of Pseudomonas aeruginosa (MTCC 17702) and Escherichia coli (MTCC 10436) and to assess their potential to act as anodic biocatalyst with the function of anaerobic consortia for microbial (bio) fuel cell (BFC) application. METHODS AND RESULTS: Three BFCs (single chamber; open-air cathode; noncatalysed electrodes) were operated simultaneously in acidophilic microenvironments. Pseudomonas aeruginosa (BFC(P)) showed higher current density (264 mA m(-2) ) followed by mixed culture (BFC(M); 166 mA m(-2)) and E. coli (BFC(E); 147 mA m(-2)). However, total operating period and substrate degradation were relatively found to be effective with mixed culture (58%; 72 h) followed by BFC(P) (39%; 60 h) and BFC(E) (31%; 48 h). Higher electron discharge (ED) was observed with Ps. aeruginosa while mixed culture showed the involvement of redox mediators in the ED process. CONCLUSIONS: Mixed culture showed to sustain biopotential for longer periods along with a stable ED. The presence of redox signals and high substrate degradation was also evidencing its performance compared to the pure strains studied. This supports the practical utility of mixed culture over the pure cultures for real-field BFC applications especially while operating with wastewater. SIGNIFICANCE AND IMPACT OF THE STUDY: This study revealed the efficiency and viability of mixed consortia in comparison with pure strains for microbial (bio) fuel cell applications.


Assuntos
Bactérias Anaeróbias/metabolismo , Fontes de Energia Bioelétrica , Eletrodos , Enzimas/metabolismo , Escherichia coli/fisiologia , Pseudomonas aeruginosa/fisiologia , Eletroquímica , Elétrons , Oxirredução
15.
Bioresour Technol ; 341: 125809, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34479141

RESUMO

A comprehensive polyphasic evaluation of a microalgal isolate Scenedesmus sp. SVMIICT1 through morphological, biochemical, photosynthetic characterization, next-generation sequencing and lipid pathway analysis was reported. The strain was cultivated photo-autotrophically, where the maximum photosynthetic yield (FV/FM) of 0.75 was observed on the 4th day with optimal PSII photochemical efficiency. Enhanced electron transport rate (ETR(I)) with inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) resulted in cyclic electron flow. A fair share of carbohydrate content (36 µg/mg) was ascribed to the presence of pyrenoid towards higher CO2 sequestration pursuant to carbon concentrating mechanism (CCM). Denovo sequencing of the genome was assembled, annotated for the prediction of gene and protein. KEGG automatic annotation server (KAAS) analysis depicted the presence of genes accompanying the biosynthesis of the glycerophospholipid pathway. Fatty acid profile represented a higher fraction of palmitic acid (C16:0; 41.6%) followed by alpha-linolenic acid (C18:3; 44.5%).


Assuntos
Microalgas , Scenedesmus , Carbono , Lipídeos , Fotossíntese
16.
Chemosphere ; 279: 130563, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34134408

RESUMO

The study evaluated the preparation of a biocomposite using waste-derived polyhydroxybutyrate (PHB) and bagasse cellulose (α-cellulose) in a biorefinery approach. PHB was produced using dark fermentation effluent rich in volatile fatty acids (VFA) derived from vegetable waste and α-cellulose was extracted from sugarcane bagasse (SCB). Nutrient limitation induced microbial PHB accumulation, wherein maximum production of 0.28 ± 0.06 g PHB/g DCW (28%) was observed. Confocal examination showed the deposition of PHB granules in the cell cytoplasm and NMR spectrum exhibited a structural correlation. α-Cellulose (0.22 ± 0.02 g α-cellulose/g SCB) was extracted through SCB pretreatment. Thereafter, grafting α-cellulose with PHB offered intermolecular bonding, which resulted in enhanced thermal stability of the biocomposite than corresponding pristine PHB. FE-SEM morphological examination of biocomposite depicted that α-cellulose functioned as a filler to PHB. XRD profiles showed significant decrement in PHB crystallinity, signifying the functional role of α-cellulose as an effective reinforcing agent. Additionally, ether functional group of α-cellulose and ester group of PHB also appeared in XPS analysis of the composite, thus authorizing the effective blending of α-cellulose and PHB. Utilization of bagasse-derived cellulose for strengthening biologically produced PHB expands its applications, while simultaneously addressing the plastic pollution issues. Additional value from this process was further achieved by incorporating the concept of biorefinery, wherein acidogenic fermentation effluents were used for the production of PHA, which enabled the re-entry of products (VFA) to the production cycle, thus achieving circularity.


Assuntos
Celulose , Saccharum , Ácidos Graxos Voláteis , Fermentação
17.
Bioresour Technol ; 321: 124354, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33277136

RESUMO

Global urbanization has resulted in amplified energy and material consumption with simultaneous waste generation. Current energy demand is mostly fulfilled by finite fossil reserves, which has critical impact on the environment and thus, there is a need for carbon-neutral energy. In this view, biohydrogen (bio-H2) is considered suitable due to its potential as a green and dependable carbon-neutral energy source in the emerging 'Hydrogen Economy'. Bio-H2 production by dark fermentation of biowaste/biomass/wastewater is gaining significant attention. However, bio-H2production still holds critical challenges towards scale-up with reference to process limitations and economic viabilities. This review illustrates the status of dark-fermentation process in the context of process sustainability and achieving commercial success. The review also provides an insight on various process integrations for maximum resource recovery including closed loop biorefinery approach towards the accomplishment of carbon neutral H2 production.


Assuntos
Hidrogênio , Águas Residuárias , Biomassa , Fermentação , Hidrogênio/análise
18.
Environ Technol Innov ; 23: 101696, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34250217

RESUMO

Since COVID-19 outbreak, wastewater-based epidemiology (WBE) studies as surveillance system is becoming an emerging interest due to its functional advantage as a tool for early warning signal and to catalyze effective disease management strategies based on the community diagnosis. An attempt was made in this study to define and establish a methodological approach for conducting WBE studies in the framework of identifying/selection of surveillance sites, standardizing sampling policy, designing sampling protocols to improve sensitivity, adopting safety protocol, and interpreting the data. Data from hourly sampling indicated a peak in the viral RNA during the morning hours (6-9 am) when the all the domestic activities are maximum. The daily sampling and processing revealed the dynamic nature of infection spread among the population. The two sampling methods viz. grab, and composite showed a good correlation. Overall, this study establishes a structured protocol for performing WBE studies that could provide useful insights on the spread of the pandemic at a given point of time. Moreover, this framework could be extrapolated to monitor several other clinically relevant diseases. Following these guidelines, it is possible to achieve measurable and reliable SARS-CoV-2 RNA concentrations in wastewater infrastructure and therefore, provides a methodological basis for the establishment of a national surveillance system.

20.
Sci Total Environ ; 768: 144704, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33736319

RESUMO

SARS-CoV-2 pandemic is having a devastating effect on human lives. Recent reports have shown that majority of the individuals recovered from COVID-19 have serious health complications, which is going to be a huge economic burden globally. Given the wide-spread transmission of SARS-CoV-2 it is almost impossible to test every individual in densely populated countries. Recent reports have shown that sewage-based surveillance can be used as holistic approach to understand the spread of the pandemic within a population or area. Here we have estimated the spread of SARS-CoV-2 in the city of Hyderabad, India, which is a home for nearly 10 million people. The sewage samples were collected from all the major sewage treatment plants (STPs) and were processed for detecting the viral genome using the standard Reverse Transcription Polymerase Chain Reaction (RT-PCR) method. Interestingly, inlet samples of STPs were positive for SARS-CoV-2, while the outlets were negative, which indicates that the standard sewage treatment methods are efficient in eliminating the SARS-CoV-2 viral particles. Based on the detected viral gene copies per litre and viral particle shedding per individual, the total number of individuals exposed to SARS-CoV-2 was estimated. Through this study we suggest that sewage-based surveillance is an effective approach to study the infection dynamics, which helps in efficient management of the SARS-CoV-2 spread.


Assuntos
COVID-19 , SARS-CoV-2 , Cidades , Humanos , Índia , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA