Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JIMD Rep ; 54(1): 54-60, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32685351

RESUMO

BACKGROUND: Infantile neuroaxonal dystrophy (INAD) is a rare, autosomal recessive disease due to defects in PLA2G6 and is associated with lipid peroxidation. RT001 is a di-deuterated form of linoleic acid that protects lipids from oxidative damage. METHODS: We evaluated the pharmacokinetics (PK), safety, and effectiveness of RT001 in two subjects with INAD (subject 1: 34 months; subject 2: 10 months). After screening and baseline evaluations, subjects received 1.8 g of RT001 BD. PK analysis and clinical evaluations were made periodically. MAIN FINDINGS: Plasma levels of deuterated linoleic acid (D2-LA), deuterated arachidonic acid (D2-AA), D2-LA to total LA, and D2-AA to total AA ratios were measured. The targeted plasma D2-LA ratio (>20%) was achieved by month 1 and maintained throughout the study. RBC AA-ratios were 0.11 and 0.18 at 6 months for subjects 1 and 2; respectively. No treatment-related adverse events occurred. Limited slowing of disease progression and some return of lost developmental milestones were seen. CONCLUSIONS: Oral RT001 was administered safely in two subjects with INAD. Early findings suggest that the compound was well tolerated, metabolized and incorporated in the RBC membrane. A clinical trial is underway to assess efficacy.

3.
Toxicol Lett ; 207(2): 97-103, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21906664

RESUMO

Oxidative damage of membrane polyunsaturated fatty acids (PUFA) is thought to play a major role in mitochondrial dysfunction related to Parkinson's disease (PD). The toxic products formed by PUFA oxidation inflict further damage on cellular components and contribute to neuronal degeneration. Here, we tested the hypothesis that isotopic reinforcement, by deuteration of the bisallylic sites most susceptible to oxidation in PUFA may provide at least partial protection against nigrostriatal injury in a mouse model of oxidative stress and cell death, the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model. Mice were fed a fat-free diet supplemented with saturated acids, oleic acid and essential PUFA: either normal, hydrogenated linoleic (LA, 18:2n-6) and α-linolenic (ALA, 18:3n-3) or deuterated 11,11-D2-LA and 11,11,14,14-D4-ALA in a ratio of 1:1 (to a total of 10% mass fat) for 6 days; each group was divided into two cohorts receiving either MPTP or saline and then continued on respective diets for 6 days. Brain homogenates from mice receiving deuterated PUFA (D-PUFA) vs. hydrogenated PUFA (H-PUFA) demonstrated a significant incorporation of deuterium as measured by isotope ratio mass-spectrometry. Following MPTP exposure, mice fed H-PUFA revealed 78.7% striatal dopamine (DA) depletion compared to a 46.8% reduction in the D-PUFA cohort (as compared to their respective saline-treated controls), indicating a significant improvement in DA concentration with D-PUFA. Similarly, higher levels of the DA metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) were detected in MPTP-exposure mice administered D-PUFA; however, saline-treated mice revealed no change in DA or DOPAC levels. Western blot analyses of tyrosine hydroxylase (TH) confirmed neuroprotection with D-PUFA, as striatal homogenates showed higher levels of TH immunoreactivity in D-PUFA (88.5% control) vs. H-PUFA (50.4% control) in the MPTP-treated cohorts. In the substantia nigra, a significant improvement was noted in the number of nigral dopaminergic neurons following MPTP exposure in the D-PUFA (79.5% control) vs. H-PUFA (58.8% control) mice using unbiased stereological cell counting. Taken together, these findings indicate that dietary isotopic reinforcement with D-PUFA partially protects against nigrostriatal damage from oxidative injury elicited by MPTP in mice.


Assuntos
Corpo Estriado/efeitos dos fármacos , Ácidos Graxos Insaturados/farmacologia , Doença de Parkinson/prevenção & controle , Transtornos Parkinsonianos/prevenção & controle , Substância Negra/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Deutério , Modelos Animais de Doenças , Ácido Linoleico/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Ácido Oleico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Ácido alfa-Linolênico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA