Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(23): 15797-15809, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34813323

RESUMO

Reactive transport modeling (RTM) is an essential tool for the prediction of contaminants' behavior in the bio- and geosphere. However, RTM of sorption reactions is constrained by the reactive surface site assessment. The reactive site density variability of the crystal surface nanotopography provides an "energetic landscape", responsible for heterogeneous sorption efficiency, not covered in current RTM approaches. Here, we study the spatially heterogeneous sorption behavior of Eu(III), as an analogue to trivalent actinides, on a polycrystalline nanotopographic calcite surface and quantify the sorption efficiency as a function of surface nanoroughness. Based on experimental data from micro-focus time-resolved laser-induced luminescence spectroscopy (µTRLFS), vertical scanning interferometry, and electron back-scattering diffraction (EBSD), we parameterize a surface complexation model (SCM) using surface nanotopography data. The validation of the quantitatively predicted spatial sorption heterogeneity suggests that retention reactions can be considerably influenced by nanotopographic surface features. Our study presents a way to implement heterogeneous surface reactivity into a SCM for enhanced prediction of radionuclide retention.


Assuntos
Elementos da Série Actinoide , Adsorção
2.
Environ Sci Technol ; 55(8): 4871-4879, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33705108

RESUMO

The interaction of Eu(III) with thin sections of migmatized gneiss from the Bukov Underground Research Facility (URF), Czech Republic, was characterized by microfocus time-resolved laser-induced luminescence spectroscopy (µTRLFS) with a spatial resolution of ∼20 µm, well below typical grain sizes of the material. By this approach, sorption processes can be characterized on the molecular level while maintaining the relationship of the speciation with mineralogy and topography. The sample mineralogy was characterized by powder X-ray diffraction and Raman microscopy, and the sorption was independently quantified by autoradiography using 152Eu. Representative µTRLFS studies over large areas of multiple mm2 reveal that sorption on the heterogeneous material is not dominated by any of the typical major constituent minerals (quartz, feldspar, and mica). Instead, minor phases such as chlorite and prehnite control the Eu(III) distribution, despite their low contribution to the overall composition of the material, as well as common but less studied phases like Mg-hornblende. In particular, prehnite shows high a sorption uptake as well as strong binding of Eu to the mineral surface. Sorption on prehnite and hornblende happens at the expense of feldspar, which showed the highest sorption uptake in a previous spatially resolved study on granitic rock. Similarly, sorption on quartz is reduced, even though only low quantities of strongly bound Eu(III) were found here previously. Our results illustrate how competition of mineral surfaces for adsorbing cations drives the metal distribution in heterogeneous systems.


Assuntos
Minerais , Quartzo , Adsorção , República Tcheca , Metais
3.
J Hazard Mater ; 388: 122066, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31972433

RESUMO

Technetium (Tc) retention on gamma alumina nanoparticles (γ-Al2O3 NPs) has been studied in the absence (binary system) and presence (ternary system) of previously sorbed Fe2+ as a reducing agent. In the binary system, γ-Al2O3 NPs sorb up to 6.5% of Tc from solution as Tc(VII). In the ternary system, the presence of previously sorbed Fe2+ on γ-Al2O3 NPs significantly enhances the uptake of Tc from pH 4 to pH 11. Under these conditions, the reaction rate of Tc increases with pH, resulting in a complete uptake for pHs > 6.5. Redox potential (Eh) and X-ray photoelectron spectroscopy (XPS) measurements evince heterogeneous reduction of Tc(VII) to Tc(IV). Here, the formation of Fe-containing solids was observed; Raman and scanning electron microscopy showed the presence of Fe(OH)2, Fe(II)-Al(III)-Cl layered double hydroxide (LDH), and other Fe(II) and Fe(III) mineral phases, e.g. Fe3O4, FeOOH, Fe2O3. These results indicate that Tc scavenging is predominantly governed by the presence of sorbed Fe2+ species on γ-Al2O3 NPs, where the reduction of Tc(VII) to Tc(IV) and overall Tc retention is highly improved, even under acidic conditions. Likewise, the formation of additional Fe solid phases in the ternary system promotes the Tc uptake via adsorption, co-precipitation, and incorporation mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA