Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 123(18): 3217-3230, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39033326

RESUMO

Traction-force microscopy (TFM) has emerged as a widely used standard methodology to measure cell-generated traction forces and determine their role in regulating cell behavior. While TFM platforms have enabled many discoveries, their implementation remains limited due to complex experimental procedures, specialized substrates, and the ill-posed inverse problem whereby low-magnitude high-frequency noise in the displacement field severely contaminates the resulting traction measurements. Here, we introduce deep morphology traction microscopy (DeepMorphoTM), a deep-learning alternative to conventional TFM approaches. DeepMorphoTM first infers cell-induced substrate displacement solely from a sequence of cell shapes and subsequently computes cellular traction forces, thus avoiding the requirement of a specialized fiduciarily marked deformable substrate or force-free reference image. Rather, this technique drastically simplifies the overall experimental methodology, imaging, and analysis needed to conduct cell-contractility measurements. We demonstrate that DeepMorphoTM quantitatively matches conventional TFM results while offering stability against the biological variability in cell contractility for a given cell shape. Without high-frequency noise in the inferred displacement, DeepMorphoTM also resolves the ill-posedness of traction computation, increasing the consistency and accuracy of traction analysis. We demonstrate the accurate extrapolation across several cell types and substrate materials, suggesting robustness of the methodology. Accordingly, we present DeepMorphoTM as a capable yet simpler alternative to conventional TFM for characterizing cellular contractility in two dimensions.


Assuntos
Microscopia , Microscopia/métodos , Fenômenos Biomecânicos , Animais , Aprendizado Profundo , Fenômenos Mecânicos , Camundongos , Forma Celular , Humanos
2.
Biophys J ; 121(4): 629-643, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34999131

RESUMO

Tissue and cell mechanics are crucial factors in maintaining homeostasis and in development, with aberrant mechanics contributing to many diseases. During the epithelial-to-mesenchymal transition (EMT), a highly conserved cellular program in organismal development and cancer metastasis, cells gain the ability to detach from their original location and autonomously migrate. While a great deal of biochemical and biophysical changes at the single-cell level have been revealed, how the physical properties of multicellular assemblies change during EMT, and how this may affect disease progression, is unknown. Here we introduce cell monolayer deformation microscopy (CMDM), a new methodology to measure the planar mechanical properties of cell monolayers by locally applying strain and measuring their resistance to deformation. We employ this new method to characterize epithelial multicellular mechanics at early and late stages of EMT, finding the epithelial monolayers to be relatively compliant, ductile, and mechanically homogeneous. By comparison, the transformed mesenchymal monolayers, while much stiffer, were also more brittle, mechanically heterogeneous, displayed more viscoelastic creep, and showed sharp yield points at significantly lower strains. Here, CMDM measurements identify specific biophysical functional states of EMT and offer insight into how cell aggregates fragment under mechanical stress. This mechanical fingerprinting of multicellular assemblies using new quantitative metrics may also offer new diagnostic applications in healthcare to characterize multicellular mechanical changes in disease.


Assuntos
Transição Epitelial-Mesenquimal , Microscopia , Estresse Mecânico
3.
Front Cell Dev Biol ; 10: 932510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36200037

RESUMO

During metastasis, all cancer types must migrate through crowded multicellular environments. Simultaneously, cancers appear to change their biophysical properties. Indeed, cell softening and increased contractility are emerging as seemingly ubiquitous biomarkers of metastatic progression which may facilitate metastasis. Cell stiffness and contractility are also influenced by the microenvironment. Stiffer matrices resembling the tumor microenvironment cause metastatic cells to contract more strongly, further promoting contractile tumorigenic phenotypes. Prostate cancer (PCa), however, appears to deviate from these common cancer biophysics trends; aggressive metastatic PCa cells appear stiffer, rather than softer, to their lowly metastatic PCa counterparts. Although metastatic PCa cells have been reported to be more contractile than healthy cells, how cell contractility changes with increasing PCa metastatic potential has remained unknown. Here, we characterize the biophysical changes of PCa cells of various metastatic potential as a function of microenvironment stiffness. Using a panel of progressively increasing metastatic potential cell lines (22RV1, LNCaP, DU145, and PC3), we quantified their contractility using traction force microscopy (TFM), and measured their cortical stiffness using optical magnetic twisting cytometry (OMTC) and their motility using time-lapse microscopy. We found that PCa contractility, cell stiffness, and motility do not universally scale with metastatic potential. Rather, PCa cells of various metastatic efficiencies exhibit unique biophysical responses that are differentially influenced by substrate stiffness. Despite this biophysical diversity, this work concludes that mechanical microenvironment is a key determinant in the biophysical response of PCa with variable metastatic potentials. The mechanics-oriented focus and methodology of the study is unique and complementary to conventional biochemical and genetic strategies typically used to understand this disease, and thus may usher in new perspectives and approaches.

4.
J Tissue Eng ; 12: 2041731421990842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613959

RESUMO

This study investigates the transcriptome response of meniscus fibrochondrocytes (MFCs) to the low oxygen and mechanical loading signals experienced in the knee joint using a model system. We hypothesized that short term exposure to the combined treatment would promote a matrix-forming phenotype supportive of inner meniscus tissue formation. Human MFCs on a collagen scaffold were stimulated to form fibrocartilage over 6 weeks under normoxic (NRX, 20% O2) conditions with supplemented TGF-ß3. Tissues experienced a delayed 24h hypoxia treatment (HYP, 3% O2) and then 5 min of dynamic compression (DC) between 30 and 40% strain. Delayed HYP induced an anabolic and anti-catabolic expression profile for hyaline cartilage matrix markers, while DC induced an inflammatory matrix remodeling response along with upregulation of both SOX9 and COL1A1. There were 41 genes regulated by both HYP and DC. Overall, the combined treatment supported a unique gene expression profile favouring the hyaline cartilage aspect of inner meniscus matrix and matrix remodeling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA