Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(30): e202300428, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-36916635

RESUMO

Heterocyclic dimers consisting of combinations of butterfly-shaped phenothiazine (PTZ) and its chemically oxidized form phenothiazine-5,5-dioxide (PTZ(SO2 )) have been synthesized. A twist is imposed across the dimers by ortho-substituents including methyl ethers, sulfides and sulfones. X-ray crystallography, cyclic voltammetry and optical spectroscopy, underpinned by computational studies, have been employed to study the interplay between the oxidation state, conformational restriction, and emission mechanisms including thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP). While the PTZ(SO2 ) dimers are simple fluorophores, the presence of PTZ induces triplet-mediated emission with a mixed PTZ-PTZ(SO2 ) dimer displaying concentration dependent hallmarks of both TADF and RTP.

2.
Chemistry ; 29(42): e202301369, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37154211

RESUMO

Metal-free organic emitters that display solution-phase room temperature phosphorescence (sRTP) remain exceedingly rare. Here, we investigate the structural and photophysical properties that support sRTP by comparing a recently reported sRTP compound (BTaz-Th-PXZ) to two novel analogous materials, replacing the donor group by either acridine or phenothiazine. The emissive triplet excited state remains fixed in all three cases, while the emissive charge-transfer singlet states (and the calculated paired charge-transfer T2 state) vary with the donor unit. While all three materials show dominant RTP in film, in solution different singlet-triplet and triplet-triplet energy gaps give rise to triplet-triplet annihilation followed by weak sRTP for the new compounds, compared to dominant sRTP throughout for the original PXZ material. Engineering both the sRTP state and higher charge-transfer states therefore emerges as a crucial element in designing emitters capable of sRTP.

3.
Chemistry ; 29(23): e202203800, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36648938

RESUMO

Most organic room-temperature phosphorescence (RTP) emitters do not show their RTP in solution. Here, we incorporated sulfur-containing thiophene bridges between the donor and acceptor moieties in D3 A-type tristriazolotriazines (TTTs). The thiophene inclusion increased the spin-orbit coupling associated with the radiative T1 →S0 pathway, allowing RTP to be observed in solution for all compounds, likely assisted by protection of the emissive TTT-thiophene core from the environment by the bulky peripheral donors.

4.
Phys Chem Chem Phys ; 25(36): 24878-24882, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37681234

RESUMO

In this study we present a novel energy transfer material inspired by natural light-harvesting antenna arrays, zinc(II) phthalocyanine-pyrene (ZnPcPy). The ZnPcPy system facilitates energy transfer from 16 covalently linked pyrene (Py) donor chromophores to the emissive central zinc(II) phthalocyanine (ZnPc) core. Nearly 98% energy transfer efficiency is determined from the changes in emission decay rates between free MePy to covalently linked Py, supported by comparisons of photoluminescence quantum yields using different excitation wavelengths. A comparative analysis of ZnPcPy and an equivalent mixture of ZnPc and MePy demonstrates the superior light-harvesting performance of the covalently linked system, with energy transfer rates 9705 times higher in the covalently bound system. This covalent strategy allows for very high loadings of absorbing Py chromophores to be achieved while also avoiding exciton quenching that would otherwise arise, with the same strategy widely applicable to other pairs of Forster resonance energy transfer (FRET) chromophores.

5.
Angew Chem Int Ed Engl ; 62(9): e202217530, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36622736

RESUMO

10H-Dibenzo[b,e][1,4]thiaborinine 5,5-dioxide (SO2B)-a high triplet (T1 =3.05 eV) strongly electron-accepting boracycle was successfully utilised in thermally activated delayed fluorescence (TADF) emitters PXZ-Dipp-SO2B and CZ-Dipp-SO2B. We demonstrate the near-complete separation of highest occupied and lowest unoccupied molecular orbitals leading to a low oscillator strength of the S1 →S0 CT transition, resulting in very long ca. 83 ns and 400 ns prompt fluorescence lifetimes for CZ-Dipp-SO2B and PXZ-Dipp-SO2B, respectively, but retaining near unity photoluminescence quantum yield. OLEDs using CZ-Dipp-SO2B as the luminescent dopant display high external quantum efficiency (EQE) of 23.3 % and maximum luminance of 18600 cd m-2 with low efficiency roll off at high brightness. For CZ-Dipp-SO2B, reverse intersystem crossing (rISC) is mediated through the vibronic coupling of two charge transfer (CT) states, without involving the triplet local excited state (3 LE), resulting in remarkable rISC rate invariance to environmental polarity and polarisability whilst giving high organic light-emitting diode (OLED) efficiency. This new form of rISC allows stable OLED performance to be achieved in different host environments.

6.
Angew Chem Int Ed Engl ; 62(28): e202302550, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-36951925

RESUMO

A series of carbazole-dendronized tris(2,4,6-trichlorophenyl)methyl (TTM) radicals have been synthesized. The photophysical properties of dendronized radicals up to the fourth generation were compared systematically to understand how structure-property relationships evolve with generation. The photoluminescence quantum yield (PLQY) was found to increase with the increasing generation, and the fourth generation (G4TTM) in cyclohexane solution showed a PLQY as high as 63 % at a wavelength of 627 nm (in the deep-red region) from the doublet state. The dendron modification strategy also showed a blue-shift of the emission on increasing the generation number, and the photostability was also increased compared to the bare TTM radical.

7.
Phys Chem Chem Phys ; 24(29): 17770-17781, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35848596

RESUMO

Control of photophysical properties is crucial for the continued development of electroluminescent devices and luminescent materials. Preparation and study of original molecules uncovers design rules towards efficient materials and devices. Here we have prepared 7 new compounds based on the popular donor-acceptor design used in thermally activated delayed fluorescence emitters. We introduce for the first time benzofuro[3,2-e]-1,2,4-triazine and benzothieno[3,2-e]-1,2,4-triazine acceptors which were connected to several common donors: phenoxazine, phenothiazine, carbazole and 3,6-di-tert-butylcarbazole. DFT calculations, and steady-state and time-resolved photophysical studies were conducted in solution and in solid states. While derivatives with azine moieties are non-emissive in any form, the compounds comprising 3,6-di-tert-butylcarbazole display TADF in all cases. More interestingly, the two derivatives substituted with a carbazole donor are TADF active when dispersed in a polymer matrix and phosphorescent at room temperature in neat films (microcrystalline form).


Assuntos
Carbazóis , Luminescência , Cristalização , Triazinas
8.
Phys Chem Chem Phys ; 25(1): 684-689, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36485073

RESUMO

Considering the relevance of room temperature phosphorescent (RTP) materials, we discuss the influence of donor and acceptor groups substituted on to a twisted three-fold symmetric hydrocarbon homotruxene, which presents a persistent RTP, even in the absence of donor or acceptor moieties, under ambient conditions as a result of the twisted π-system. Compared to a fluorine acceptor, a donor methoxy group increases the phosphorescence decay rate in solution, while in the solid-state, molecular aggregation and packing yield a very persistent phosphorescence visible by the eye. The RTP of the intrinsically apolar homotruxene is found to be modulated by polar substituents, whose main impact on the solid-state emission is due to altered packing in the crystal.

9.
Angew Chem Int Ed Engl ; 61(24): e202202193, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35343025

RESUMO

Herein, we expose how the antagonistic relationship between solid-state luminescence and photocyclization of oligoaryl alkene chromophores is modulated by the conjugation length of their alkenyl backbones. Heptaaryl cycloheptatriene molecular rotors exhibit aggregation-induced emission characteristics. We show that their emission is turned off upon breaking the conjugation of the cycloheptatriene by epoxide formation. While this modification is deleterious to photoluminescence, it enables formation of extended polycyclic frameworks by Mallory reactions. We exploit this dichotomy (i) to manipulate emission properties in a controlled manner and (ii) as a synthetic tool to link together pairs of phenyl rings in a specific sequence. This method to alter the tendency of oligoaryl alkenes to undergo photocyclization can inform the design of solid-state emitters that avoid this quenching mechanism, while also allowing selective cyclization in syntheses of polycyclic aromatic hydrocarbons.

10.
Chemistry ; 27(21): 6545-6556, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33560550

RESUMO

A series of four heterocyclic dimers has been synthesized, with twisted geometries imposed across the central linking bond by ortho-alkoxy chains. These include two isomeric bicarbazoles, a bis(dibenzothiophene-S,S-dioxide) and a bis(thioxanthene-S,S-dioxide). Spectroscopic and electrochemical methods, supported by density functional theory, have given detailed insights into how para- vs. meta- vs. broken conjugation, and electron-rich vs. electron-poor heterocycles impact the HOMO-LUMO gap and singlet and triplet energies. Crucially for applications as OLED hosts, the triplet energy (ET ) of these molecules was found to vary significantly between dilute polymer films and neat films, related to conformational demands of the molecules in the solid state. One of the bicarbazole species shows a variation in ET of 0.24 eV in the different media-sufficiently large to "make-or-break" an OLED device-with similar discrepancies found between neat films and frozen solution measurements of other previously reported OLED hosts. From consolidated optical and optoelectronic investigations of different host/dopant combinations, we identify that only the lower ET values measured in neat films give a reliable indicator of host/guest compatibility. This work also provides new molecular design rules for obtaining very high ET materials and controlling their HOMO and LUMO energies.

11.
J Phys Chem A ; 124(8): 1535-1553, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32024366

RESUMO

Emitters showing thermally activated delayed fluorescence (TADF) in electroluminescent devices rely on efficient reverse intersystem crossing (rISC) arising from small thermal activation barriers between the lowest excited triplet and singlet manifolds. A small donor-acceptor compound consisting of a demethylacridine donor and a methylbenzoate acceptor group is used as a model TADF emitter. The spectroscopic signatures of this system are characterized using a combination of photoluminescence and photoluminescence excitation, and the photoluminescence decay dynamics are recorded between delays of 2 ns and 20 ms. Above T = 200 K, our data provide convincing evidence for TADF at intermediate delays in the microsecond range, whereas triplet-triplet annihilation and slow triplet decay at later times can be observed over the entire temperature range from T = 80 K to room temperature. Moreover, close to room temperature, we find a second and faster up-conversion mechanism, tentatively assigned to reverse internal conversion between different triplet configurations. An interpretation of these experimental findings requires a calculation of the deformation patterns and potential minima of several electronic configurations. This task is performed with a range-separated hybrid functional, outperforming standard density functionals or global hybrids. In particular, the systematic underestimation of the energy of charge transfer (CT) states with respect to local excitations within the constituting chromophores is replaced by more reliable transition energies for both kinds of excitations. Hence, several absorption and emission features can be assigned unambiguously, and the observed activation barriers for rISC and reverse internal conversion correspond to calculated energy differences between the potential surfaces in different electronic configurations.

12.
Phys Chem Chem Phys ; 21(7): 3814-3821, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30698176

RESUMO

Phenazine derivative molecules were studied using steady state and time resolved fluorescence techniques and demonstrated to lead to strong formation of aggregated species, identified as dimers by time dependent density functional theory calculations. Blended films in a matrix of Zeonex®, produced at different concentrations, showed different contributions of dimer and monomer emissions in a prompt time frame, e.g. less than 50 ns. In contrast, the phosphorescence (e.g. emission from the triplet state) shows no significant effect on dimer formation, although strong dependence of the phosphorescence intensity on concentration is observed, leading to phosphorescence being quenched at higher concentration.

13.
Phys Chem Chem Phys ; 20(17): 11867-11875, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29662993

RESUMO

The synthesis is reported of twelve new symmetrical carbazole dimers in which the carbazole units are linked via 1,4-phenylene spacers. There are two distinct series of compounds based on the position on the carbazole ring where the phenylene spacer is attached: this is either at carbazole C(3) (series 1a-1f) or at C(2) (series 2a-2f). The central phenylene ring is substituted with either two methyl, two methoxy or two cyano substituents which impart an intramolecular torsional angle between the phenylene and carbazole rings, thereby limiting the extent of π-conjugation between the carbazole units, and raising the triplet energies of the molecules to ET 2.6-3.0 eV, as determined from their phosphorescence spectra at 80 K. Structure-property relationships were studied by UV-vis and fluorescence spectroscopy, cyclic voltammetry and theoretical calculations. A notable observation is that substitution at the 2-position of carbazole (linear conjugation) exerts control over the position of the HOMO, while substitution at the 3-position of carbazole (meta conjugation) allows greater control over the LUMO. X-ray crystal structures are reported for two of the bicarbazoles. Compound 2d is shown to be a suitable host for the sky-blue emitter FIrpic in PhOLEDs, with improved device performance compared to CBP as host.

14.
J Am Chem Soc ; 139(49): 17882-17889, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29151342

RESUMO

Small, apolar aromatic groups, such as phenyl rings, are commonly included in the structures of fluorophores to impart hindered intramolecular rotations, leading to desirable solid-state luminescence properties. However, they are not normally considered to take part in through-space interactions that influence the fluorescent output. Here, we report on the photoluminescence properties of a series of phenyl-ring molecular rotors bearing three, five, six, and seven phenyl groups. The fluorescent emissions from two of the rotors are found to originate, not from the localized excited state as one might expect, but from unanticipated through-space aromatic-dimer states. We demonstrate that these relaxed dimer states can form as a result of intra- or intermolecular interactions across a range of environments in solution and solid samples, including conditions that promote aggregation-induced emission. Computational modeling also suggests that the formation of aromatic-dimer excited states may account for the photophysical properties of a previously reported luminogen. These results imply, therefore, that this is a general phenomenon that should be taken into account when designing and interpreting the fluorescent outputs of luminescent probes and optoelectronic devices based on fluorescent molecular rotors.

15.
Phys Chem Chem Phys ; 19(5): 3473-3479, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27824176

RESUMO

The optical properties of phenazine derivative probe solutions involving intersystem crossing from singlet to triplet states were investigated by time resolved spectroscopy. The room temperature phosphorescence emission presented different time responses when Cd2+ ions were bound to the probe chemical structure. The complex exciplex formation observed to occur in this case was not directly responsible for the change in the phosphorescence lifetime. This was more influenced by the new molecular conformation and modified spin-orbit coupling imposed by the binding of the Cd2+ ions to the phenazine molecules.

16.
Chemistry ; 22(33): 11795-806, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27404332

RESUMO

Star-shaped conjugated molecules, consisting of a benzene central unit symmetrically trisubstituted with either oxa- or thiadiazole bithiophene groups, were synthesized as promising molecules and building blocks for application in (opto)electronics and electrochromic devices. Their optical (Eg (opt)) as well as electrochemical (Eg (electro)) band gaps depended on the type of the side arm and the number of solubilizing alkyl substituents. Oxadiazole derivatives showed Eg (opt) slightly below 3 eV and by 0.2 eV larger than those determined for thiadiazole-based compounds. The presence of alkyl substituents in the arms additionally lowered the band gap. The obtained compounds were efficient electroluminophores in guest/host-type light-emitting diodes. They also showed a strong tendency to self-organize in monolayers deposited on graphite, as evidenced by scanning tunneling microscopy. The structural studies by X-ray scattering revealed the formation of supramolecular columnar stacks in which the molecules were organized. Differences in macroscopic alignment in the specimen indicated variations in the self-assembly mechanism between the molecules. The compounds as trifunctional monomers were electrochemically polymerized to yield the corresponding polymer network. As shown by UV/Vis-NIR spectroelectrochemical studies, these networks exhibited reversible electrochromic behavior both in the oxidation and in the reduction modes.

17.
Chemphyschem ; 17(19): 2956-2961, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27338655

RESUMO

Factors influencing the rate of reverse intersystem crossing (krISC ) in thermally activated delayed fluorescence (TADF) emitters are critical for improving the efficiency and performance of third-generation heavy-metal-free organic light-emitting diodes (OLEDs). However, present understanding of the TADF mechanism does not extend far beyond a thermal equilibrium between the lowest singlet and triplet states and consequently research has focused almost exclusively on the energy gap between these two states. Herein, we use a model spin-vibronic Hamiltonian to reveal the crucial role of non-Born-Oppenheimer effects in determining krISC . We demonstrate that vibronic (nonadiabatic) coupling between the lowest local excitation triplet (3 LE) and lowest charge transfer triplet (3 CT) opens the possibility for significant second-order coupling effects and increases krISC by about four orders of magnitude. Crucially, these simulations reveal the dynamical mechanism for highly efficient TADF and opens design routes that go beyond the Born-Oppenheimer approximation for the future development of high-performing systems.

18.
Angew Chem Int Ed Engl ; 55(19): 5739-44, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27060474

RESUMO

A new family of thermally activated delayed fluorescence (TADF) emitters based on U-shaped D-A-D architecture with a novel accepting unit has been developed. All investigated compounds have small singlet-triplet energy splitting (ΔEST ) ranging from 0.02 to 0.20 eV and showed efficient TADF properties. The lowest triplet state of the acceptor unit plays the key role in the TADF mechanism. OLEDs fabricated with these TADF emitters achieved excellent efficiencies up to 16 % external quantum efficiency (EQE).

19.
Angew Chem Int Ed Engl ; 53(43): 11616-9, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25212958

RESUMO

Two phosphorescent dinuclear iridium(III) diastereomers (ΛΔ/ΔΛ) and (ΛΛ/ΔΔ) are readily separated by making use of their different solubilities in hot hexane. The bridging diarylhydrazide ligand plays an important role in the electrochemistry and photophysics of the complexes. Organic light-emitting devices (OLEDs) that use these complexes as the green-emissive dopants in solution-processable single-active-layer architectures feature electroluminescence efficiencies that are remarkably high for dinuclear metal complexes, achieving maximum values of 37 cd A(-1), 14 lm W(-1), and 11% external quantum efficiency.

20.
Chem Mater ; 36(15): 7135-7150, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39156711

RESUMO

The efficiency of thermally activated delayed fluorescence (TADF) in organic materials relies on rapid intersystem crossing rates and fast conversion of triplet (T) excitons into a singlet (S) state. Heavy atoms such as sulfur or selenium are now frequently incorporated into TADF molecular structures to enhance these properties by increased spin-orbit coupling [spin orbit coupling (SOC)] between the T and S states. Here a series of donor-acceptor (D-A) molecules based on 12H-benzo[4,5]thieno[2,3-a]carbazole and dicyanopyridine is compared with their nonsulfur control molecules designed to probe such SOC effects. We reveal that unexpected intermolecular interactions of the D-A molecules with carbazole-containing host materials instead serve as the dominant pathway for triplet decay kinetics in these materials. In-depth photophysical and computational studies combined with organic light emitting diode measurements demonstrate that the anticipated heavy-atom effect from sulfur is overshadowed by exciplex formation. Indeed, even the unsubstituted acceptor fragments exhibit pronounced TADF exciplex emission in appropriate carbazole hosts. The intermolecular charge transfer and TADF in these systems are further confirmed by detailed time-dependent density functional theory studies. This work demonstrates that anticipated heavy-atom effects in TADF emitters do not always control or even impact the photophysical and electroluminescence properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA