Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36260502

RESUMO

An anaerobic, hydrogenotrophic methane-producing archaeon was isolated from an alkaline thermal spring (42 °C, pH 9.0) in New Caledonia. This methanogen, designated strain CANT, is alkaliphilic, thermotolerant, with Gram-positive staining non-motile cells. Strain CANT grows autotrophically using hydrogen exclusively as an energy source and carbon dioxide as the sole carbon source (without the requirement of yeast extract or other organic compounds). It grows at 20-45 °C (optimum, 45 °C) and pH 7.3-9.7 (optimum, pH 9.0). NaCl is not required for growth (optimum 0 %) but is tolerated up to 1.5 %. It resists novobiocin, streptomycin and vancomycin but is inhibited by ampicillin and penicillin, among other antibiotics. The genome consists of a circular chromosome (2.2 Mb) containing 2126 predicted protein-encoding genes with a G+C content of 36.4 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain CANT is a member of the genus Methanobacterium, most closely related to the alkaliphilic Methanobacterium alcaliphilum WeN4T with 98.5 % 16S rRNA gene sequence identity. The genomes of strain CANT and M. alcaliphilum DSM 3459, sequenced in this study, share 71.6 % average nucleotide identity and 14.0 % digital DNA-DNA hybridization. Therefore, phylogenetic and physiological results indicate that strain CANT represents a novel species, for which the name Methanobacterium alkalithermotolerans sp. nov. is proposed, and strain CANT (=DSM 102889T= JCM 31304T) is assigned as the type strain.


Assuntos
Fontes Termais , Methanobacterium , Methanobacterium/genética , RNA Ribossômico 16S/genética , Filogenia , Hidrogênio , Composição de Bases , Cloreto de Sódio , Dióxido de Carbono , Vancomicina , Novobiocina , Nova Caledônia , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Metano , Antibacterianos , Ampicilina , Penicilinas , Estreptomicina , Nucleotídeos
2.
Artigo em Inglês | MEDLINE | ID: mdl-34003738

RESUMO

A novel anaerobic, alkaliphilic, mesophilic, Gram-stain-positive, endospore-forming bacterium was isolated from an alkaline thermal spring (42 °C, pH 9.0) in New Caledonia. This bacterium, designated strain LB2T, grew at 25-50 °C (optimum, 37 °C) and pH 8.2-10.8 (optimum, pH 9.5). Added NaCl was not required for growth (optimum, 0-1 %) but was tolerated up to 7 %. Strain LB2T utilized a limited range of substrates, such as peptone, pyruvate, yeast extract and xylose. End products detected from pyruvate fermentation were acetate and formate. Both ferric citrate and thiosulfate were used as electron acceptors. Elemental sulphur, nitrate, nitrite, fumarate, sulphate, sulfite and DMSO were not used as terminal electron acceptors. The two major cellular fatty acids were iso-C15 : 0 and C16 : 0. The genome consists of a circular chromosome (3.7 Mb) containing 3626 predicted protein-encoding genes with a G+C content of 36.2 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the isolate is a member of the family Proteinivoraceae, order Clostridiales within the phylum Firmicutes. Strain LB2T was most closely related to the thermophilic Anaerobranca gottschalkii LBS3T (93.2 % 16S rRNA gene sequence identity). Genome-based analysis of average nucleotide identity and digital DNA-DNA hybridization of strain LB2T with A. gottschalkii LBS3T showed respective values of 70.8 and 13.4 %. Based on phylogenetic, genomic, chemotaxonomic and physiological properties, strain LB2T is proposed to represent the first species of a novel genus, for which the name Alkalicella caledoniensis gen. nov., sp. nov. is proposed (type strain LB2T=DSM 100588T=JCM 30958T).


Assuntos
Clostridiales/classificação , Fontes Termais/microbiologia , Filogenia , Anaerobiose , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Clostridiales/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Fermentação , Nova Caledônia , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Science ; 383(6683): 618-621, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330123

RESUMO

Deep crustal production of hydrogen (H2) is a potential source of primary energy if recoverable accumulations in geological formations are sufficiently large. We report direct measurements of an elevated outgassing rate of 84% (by volume) of H2 from the deep underground Bulqizë chromite mine in Albania. A minimum of 200 tons of H2 is vented annually from the mine's galleries, making it one of the largest recorded H2 flow rates to date. We cannot attribute the flux solely to the release of paleo-fluids trapped within the rocks or to present-day active and pervasive serpentinization of ultramafic rocks; rather, our results demonstrate the presence of a faulted reservoir deeply rooted in the Jurassic ophiolite massif. This discovery suggests that certain ophiolites may host economically useful accumulations of H2 gas.

4.
Front Microbiol ; 14: 1196516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485525

RESUMO

The southeastern part of New Caledonia main island (Grande Terre) is the location of a large ophiolitic formation that hosts several hyperalkaline springs discharging high pH (∼11) and warm (<40°C) fluids enriched in methane (CH4) and hydrogen (H2). These waters are produced by the serpentinization of the ultrabasic rock formations. Molecular surveys had previously revealed the prokaryotic diversity of some of these New Caledonian springs, especially from the submarine chimneys of Prony Bay hydrothermal field. Here we investigate the microbial community of hyperalkaline waters from on-land springs and their relationships with elevated concentrations of dissolved H2 (21.1-721.3 µmol/L) and CH4 (153.0-376.6 µmol/L). 16S rRNA gene analyses (metabarcoding and qPCR) provided evidence of abundant and diverse prokaryotic communities inhabiting hyperalkaline fluids at all the collected springs. The abundance of prokaryotes was positively correlated to the H2/CH4 ratio. Prokaryotes consisted mainly of bacteria that use H2 as an energy source, such as microaerophilic Hydrogenophaga/Serpentinimonas (detected in all sources on land) or anaerobic sulfate-reducing Desulfonatronum, which were exclusively found in the most reducing (Eh ref H2 ∼ -700 mV) and the most H2-enriched waters discharging at the intertidal spring of the Bain des Japonais. The relative abundance of a specific group of uncultured Methanosarcinales that thrive in serpentinization-driven ecosystems emitting H2, considered potential H2-consuming methanogens, was positively correlated with CH4 concentrations, and negatively correlated to the relative abundance of methylotrophic Gammaproteobacteria. Firmicutes were also numerous in hyperalkaline waters, and their relative abundance (e.g., Gracilibacter or Dethiobacter) was proportional to the dissolved H2 concentrations, but their role in the H2 budget remains to be assessed. The prokaryotic communities thriving in New Caledonia hyperalkaline waters are similar to those found in other serpentinite-hosted high-pH waters worldwide, such as Lost City (North Atlantic) and The Cedars (California).

5.
Environ Sci Pollut Res Int ; 30(18): 53275-53294, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36853539

RESUMO

Mining areas and in particular those containing massive sulfides have left a heavy environmental legacy with soils and hydrographic networks highly contaminated with metals and metalloids as for example in the Iberian Pyrite Belt (Huelva, Spain). Here, we present new data on copper (Cu) isotopic composition of waters and solids collected along a continuum Mine (Tharsis)-River (Meca)-Lake (Sancho) in the Iberian Pyrite Belt. Our results show that the isotopic signature of pit lakes is spatially variable, but remains stable over the seasons; this signature seems to be controlled by water-rock interaction processes. The data obtained on the Meca River imply a number of attenuation processes such as decrease in the metal concentration by precipitation of secondary minerals. This is accompanied by preferential retention of the heavy isotope (65Cu) with a possibility of living organisms (e.g., algae) participation. The terminal Sancho lake demonstrated constant isotopic signature over the entire depth of the water column despite sizable variations in Cu concentrations, which can be tentatively explained by a superposition of counter-interacting biotic and abiotic processes of Cu fractionation. Overall, the understanding of the isotopic variations along the hydrological continuum is useful for a better understanding of metal element transfer within mining environments and surrounding surface waters.


Assuntos
Cobre , Poluentes Químicos da Água , Rios , Espanha , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Metais/análise , Isótopos , Água
6.
Microorganisms ; 9(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201651

RESUMO

(1) Background: The geothermal spring of La Crouen (New Caledonia) discharges warm (42 °C) alkaline water (pH~9) enriched in dissolved nitrogen with traces of methane, but its microbial diversity has not yet been studied. (2) Methods: Cultivation-dependent and -independent methods (e.g., Illumina sequencing and quantitative PCR based on 16S rRNA gene) were used to describe the prokaryotic diversity of this spring. (3) Results: Prokaryotes were mainly represented by Proteobacteria (57% on average), followed by Cyanobacteria, Chlorofexi, and Candidatus Gracilibacteria (GN02/BD1-5) (each > 5%). Both potential aerobes and anaerobes, as well as mesophilic and thermophilic microorganisms, were identified. Some of them had previously been detected in continental hyperalkaline springs found in serpentinizing environments (The Cedars, Samail, Voltri, and Zambales ophiolites). Gammaproteobacteria, Ca. Gracilibacteria and Thermotogae were significantly more abundant in spring water than in sediments. Potential chemolithotrophs mainly included beta- and gammaproteobacterial genera of sulfate-reducers (Ca. Desulfobacillus), methylotrophs (Methyloversatilis), sulfur-oxidizers (Thiofaba, Thiovirga), or hydrogen-oxidizers (Hydrogenophaga). Methanogens (Methanobacteriales and Methanosarcinales) were the dominant Archaea, as found in serpentinization-driven and deep subsurface ecosystems. A novel alkaliphilic hydrogenotrophic methanogen (strain CAN) belonging to the genus Methanobacterium was isolated, suggesting that hydrogenotrophic methanogenesis occurs at La Crouen.

7.
Chemosphere ; 263: 127695, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32818848

RESUMO

The submarine discharge of the high pH clarified Bayer effluent of the Gardanne alumina plant (Marseille region, France) leads to the formation of concretions at the outfall 324 m underwater and to a plume of white particles. The bulk chemical composition of the concretions has been determined by SF-ICP-MS. Mg and Al are the major elements measured with concentrations of a few hundred mg g-1. Ca and S are also found at concentrations in the range of mg g-1. Among the measured trace elements there is a specific interest in As and V because of environmental concerns pointed out by regulation authorities. Their concentrations are of tens to thousands µg g-1, respectively. Concentrations of the other elements are in the range of a few ng g-1 to few hundreds µg g-1. In order to constrain the dispersion of particles in the environment and to understand how chemical elements can be scavenged from or released to seawater, the size distribution of particles composing the concretions has been measured by settling rate experiments and, for each size class of particles, their chemical composition has been determined. For example, As and V are mainly associated to particles with mean diameters between 15.6 and 63 µm and settling rates around 96 m d-1. Overall, all the main elements (Mg, Al, Ca, S) composing concretions are associated to this size class of particles which represents 53-60% of the total concretion mass.


Assuntos
Óxido de Alumínio , Oligoelementos , Monitoramento Ambiental , França , Água do Mar , Oligoelementos/análise
8.
Front Microbiol ; 8: 57, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197130

RESUMO

Despite their potential importance as analogs of primitive microbial metabolisms, the knowledge of the structure and functioning of the deep ecosystems associated with serpentinizing environments is hampered by the lack of accessibility to relevant systems. These hyperalkaline environments are depleted in dissolved inorganic carbon (DIC), making the carbon sources and assimilation pathways in the associated ecosystems highly enigmatic. The Prony Bay Hydrothermal Field (PHF) is an active serpentinization site where, similar to Lost City (Mid-Atlantic Ridge), high-pH fluids rich in H2 and CH4 are discharged from carbonate chimneys at the seafloor, but in a shallower lagoonal environment. This study aimed to characterize the subsurface microbial ecology of this environment by focusing on the earliest stages of chimney construction, dominated by the discharge of hydrothermal fluids of subseafloor origin. By jointly examining the mineralogy and the microbial diversity of the conduits of juvenile edifices at the micrometric scale, we find a central role of uncultivated bacteria belonging to the Firmicutes in the ecology of the PHF. These bacteria, along with members of the phyla Acetothermia and Omnitrophica, are identified as the first chimneys inhabitants before archaeal Methanosarcinales. They are involved in the construction and early consolidation of the carbonate structures via organomineralization processes. Their predominance in the most juvenile and nascent hydrothermal chimneys, and their affiliation with environmental subsurface microorganisms, indicate that they are likely discharged with hydrothermal fluids from the subseafloor. They may thus be representative of endolithic serpentinization-based ecosystems, in an environment where DIC is limited. In contrast, heterotrophic and fermentative microorganisms may consume organic compounds from the abiotic by-products of serpentinization processes and/or from life in the deeper subsurface. We thus propose that the Firmicutes identified at PHF may have a versatile metabolism with the capability to use diverse organic compounds from biological or abiotic origin. From that perspective, this study sheds new light on the structure of deep microbial communities living at the energetic edge in serpentinites and may provide an alternative model of the earliest metabolisms.

9.
Front Microbiol ; 7: 1301, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27625634

RESUMO

High amounts of hydrogen are emitted in the serpentinite-hosted hydrothermal field of the Prony Bay (PHF, New Caledonia), where high-pH (~11), low-temperature (< 40°C), and low-salinity fluids are discharged in both intertidal and shallow submarine environments. In this study, we investigated the diversity and distribution of potentially hydrogen-producing bacteria in Prony hyperalkaline springs by using metagenomic analyses and different PCR-amplified DNA sequencing methods. The retrieved sequences of hydA genes, encoding the catalytic subunit of [FeFe]-hydrogenases and, used as a molecular marker of hydrogen-producing bacteria, were mainly related to those of Firmicutes and clustered into two distinct groups depending on sampling locations. Intertidal samples were dominated by new hydA sequences related to uncultured Firmicutes retrieved from paddy soils, while submarine samples were dominated by diverse hydA sequences affiliated with anaerobic and/or thermophilic submarine Firmicutes pertaining to the orders Thermoanaerobacterales or Clostridiales. The novelty and diversity of these [FeFe]-hydrogenases may reflect the unique environmental conditions prevailing in the PHF (i.e., high-pH, low-salt, mesothermic fluids). In addition, novel alkaliphilic hydrogen-producing Firmicutes (Clostridiales and Bacillales) were successfully isolated from both intertidal and submarine PHF chimney samples. Both molecular and cultivation-based data demonstrated the ability of Firmicutes originating from serpentinite-hosted environments to produce hydrogen by fermentation, potentially contributing to the molecular hydrogen balance in situ.

10.
Environ Sci Pollut Res Int ; 22(18): 13613-24, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25874424

RESUMO

The Voltri Massif is an ophiolitic complex located in the Ligurian Alps close to the city of Genova (Northern Italy) where several springs discharge high pH (up to 11.7), low salinity waters produced by the active serpentinization of the ultramafic basement. Mixing of these hyperalkaline waters with the river waters along with the uptake of atmospheric carbon dioxide forms brownish carbonate precipitates covering the bedrock at the springs. Diverse archaeal and bacterial communities were detected in these carbonate precipitates using 454 pyrosequencing analyses of 16S ribosomal RNA (rRNA) genes. Archaeal communities were dominated by members of potential methane-producing and/or methane-oxidizing Methanobacteriales and Methanosarcinales (Euryarchaeota) together with ammonia-oxidizing Nitrososphaerales (Thaumarchaeota) similar to those found in other serpentinization-driven submarine and terrestrial ecosystems. Bacterial communities consisted of members of the Proteobacteria, Actinobacteria, Planctomycetes, Bacteroidetes, Chloroflexi, and Verrucomicrobia phyla, altogether accounting for 92.2% of total retrieved bacterial 16S rRNA gene sequences. Amongst Bacteria, potential chemolithotrophy was mainly associated with Alpha- and Betaproteobacteria classes, including nitrogen-fixing, methane-oxidizing or hydrogen-oxidizing representatives of the genera Azospirillum, Methylosinus, and Hydrogenophaga/'Serpentinomonas', respectively. Besides, potential chemoorganotrophy was attributed mainly to representatives of Actinobacteria and Planctomycetales phyla. The reported 16S rRNA gene data strongly suggested that hydrogen, methane, and nitrogen-based chemolithotrophy can sustain growth of the microbial communities inhabiting the carbonate precipitates in the hyperalkaline springs of the Voltri Massif, similarly to what was previously observed in other serpentinite-hosted ecosystems.


Assuntos
Archaea/genética , Bactérias/genética , Nascentes Naturais/microbiologia , Sequência de Bases , Carbonatos/química , Precipitação Química , Ecossistema , Microbiologia Ambiental , Itália , Consórcios Microbianos , Tipagem Molecular , Filogenia , RNA Ribossômico 16S/genética , Tolerância ao Sal , Análise de Sequência de RNA
11.
Front Microbiol ; 6: 857, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379636

RESUMO

Active carbonate chimneys from the shallow marine serpentinizing Prony Hydrothermal Field were sampled 3 times over a 6 years period at site ST09. Archaeal and bacterial communities composition was investigated using PCR-based methods (clone libraries, Denaturating Gel Gradient Electrophoresis, quantitative PCR) targeting 16S rRNA genes, methyl coenzyme M reductase A and dissimilatory sulfite reductase subunit B genes. Methanosarcinales (Euryarchaeota) and Thaumarchaea were the main archaeal members. The Methanosarcinales, also observed by epifluorescent microscopy and FISH, consisted of two phylotypes that were previously solely detected in two other serpentinitzing ecosystems (The Cedars and Lost City Hydrothermal Field). Surprisingly, members of the hyperthermophilic order Thermococcales were also found which may indicate the presence of a hot subsurface biosphere. The bacterial community mainly consisted of Firmicutes, Chloroflexi, Alpha-, Gamma-, Beta-, and Delta-proteobacteria and of the candidate division NPL-UPA2. Members of these taxa were consistently found each year and may therefore represent a stable core of the indigenous bacterial community of the PHF chimneys. Firmicutes isolates representing new bacterial taxa were obtained by cultivation under anaerobic conditions. Our study revealed diverse microbial communities in PHF ST09 related to methane and sulfur compounds that share common populations with other terrestrial or submarine serpentinizing ecosystems.

12.
Environ Microbiol Rep ; 6(6): 665-74, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25756120

RESUMO

The shallow submarine hydrothermal field of the Prony Bay (New Caledonia) discharges hydrogen- and methane-rich fluids with low salinity, temperature (< 40°C) and high pH (11) produced by the serpentinization reactions of the ultramafic basement into the lagoon seawater. They are responsible for the formation of carbonate chimneys at the lagoon seafloor. Capillary electrophoresis single-strand conformation polymorphism fingerprinting, quantitative polymerase chain reaction and sequence analysis of 16S rRNA genes revealed changes in microbial community structure, abundance and diversity depending on the location, water depth, and structure of the carbonate chimneys. The low archaeal diversity was dominated by few uncultured Methanosarcinales similar to those found in other serpentinization-driven submarine and subterrestrial ecosystems (e.g. Lost City, The Cedars). The most abundant and diverse bacterial communities were mainly composed of Chloroflexi, Deinococcus-Thermus, Firmicutes and Proteobacteria. Functional gene analysis revealed similar abundance and diversity of both Methanosarcinales methanoarchaea, and Desulfovibrionales and Desulfobacterales sulfate-reducers in the studied sites. Molecular studies suggest that redox reactions involving hydrogen, methane and sulfur compounds (e.g. sulfate) are the energy driving forces of the microbial communities inhabiting the Prony hydrothermal system.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biodiversidade , Água do Mar/microbiologia , Álcalis/análise , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Baías , Ecossistema , Dados de Sequência Molecular , Nova Caledônia , Filogenia , Água do Mar/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA