Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Neurobiol Learn Mem ; 188: 107585, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35021061

RESUMO

Despite compelling evidence that stress or stress-related hormones influence fear memory consolidation processes, the understanding of molecular mechanisms underlying the effects of stress is still fragmentary. The release of corticosterone in response to pre-learning stress exposure has been demonstrated to modulate positively or negatively memory encoding and/or consolidation according to many variables such as stress intensity, the emotional valence of the learned material or the interval between stressful episode and learning experience. Here, we report that contextual but not cued fear memory consolidation was selectively impaired in male mice exposed to a 50 min-period of restraint stress just before the unpaired fear conditioning session. In addition to behavioral impairment, acute stress down-regulated activated/phosphorylated ERK1/2 (pERK1/2) in dorsal hippocampal area CA1 in mice sacrificed 60 min and 9 h after unpaired conditioning. In lateral amygdala, although acute stress by itself increased the level of pERK1/2 it nevertheless blocked the peak of pERK1/2 that was normally observed 15 min after unpaired conditioning. To examine whether stress-induced corticosterone overflow was responsible of these detrimental effects, the corticosterone synthesis inhibitor, metyrapone, was administered 30 min before stress exposure. Metyrapone abrogated the stress-induced contextual fear memory deficits but did not alleviate the effects of stress on pERK1/2 and its downstream target phosphorylated CREB (pCREB) in hippocampus CA1 and lateral amygdala. Collectively, our observations suggest that consolidation of hippocampus-dependent memory and the associated signaling pathway are particularly sensitive to stress. However, behavioral normalization by preventive metyrapone treatment was not accompanied by renormalization of the canonical signaling pathway. A new avenue would be to consider surrogate mechanisms involving proper metyrapone influence on both nongenomic and genomic actions of glucocorticoid receptors.


Assuntos
Medo/fisiologia , Hipocampo/metabolismo , Aprendizagem/fisiologia , Consolidação da Memória , Transtornos da Memória/metabolismo , Animais , Corticosterona/metabolismo , Emoções , Masculino , Metirapona/farmacologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Receptores de Glucocorticoides/metabolismo
2.
Neurobiol Learn Mem ; 179: 107406, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33609736

RESUMO

The G9a/G9a-like protein (GLP) histone lysine dimethyltransferase complex and downstream histone H3 lysine 9 dimethylation (H3K9me2) repressive mark have recently emerged as key transcriptional regulators of gene expression programs necessary for long-term memory (LTM) formation in the dorsal hippocampus. However, the role for hippocampal G9a/GLP complex in mediating the consolidation of spatial LTM remains largely unknown. Using a water maze competition task in which both dorsal hippocampus-dependent spatial and striatum-dependent cue navigation strategies are effective to solve the maze, we found that pharmacological inhibition of G9a/GLP activity immediately after learning disrupts long-term consolidation of previously learned spatial information in male mice, hence producing cue bias on the competition test performed 24 h later. Importantly, the inhibition of hippocampal G9a/GLP did not disrupt short-term memory retention. Immunohistochemical analyses revealed increases in global levels of permissive histone H3K9 acetylation in the dorsal hippocampus and dorsal striatum at 1 h post-training, which persisted up to 24 h in the hippocampus. Conversely, H3K9me2 levels were either unchanged in the dorsal hippocampus or transiently decreased at 15 min post-training in the dorsal striatum. Finally, the inhibition of G9a/GLP activity further increased global levels of H3K9 acetylation while decreasing H3K9me2 in the hippocampus at 1 h post-training. However, both marks returned to vehicle control levels at 24 h. Together, these findings support the possibility that G9a/GLP in the dorsal hippocampus is required for the transcriptional switch from short-term to long-term spatial memory formation.


Assuntos
Corpo Estriado/metabolismo , Hipocampo/metabolismo , Histona-Lisina N-Metiltransferase/fisiologia , Consolidação da Memória/fisiologia , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Memória Espacial/fisiologia , Animais , Azepinas/farmacologia , Corpo Estriado/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Código das Histonas , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Masculino , Consolidação da Memória/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Teste do Labirinto Aquático de Morris , Quinazolinas/farmacologia , Memória Espacial/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 114(38): 10262-10267, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874586

RESUMO

Temporal binding, the process that enables association between discontiguous stimuli in memory, and relational organization, a process that enables the flexibility of declarative memories, are both hippocampus-dependent and decline in aging. However, how these two processes are related in supporting declarative memory formation and how they are compromised in age-related memory loss remain hypothetical. We here identify a causal link between these two features of declarative memory: Temporal binding is a necessary condition for the relational organization of discontiguous events. We demonstrate that the formation of a relational memory is limited by the capability of temporal binding, which depends on dorsal (d)CA1 activity over time intervals and diminishes in aging. Conversely, relational representation is successful even in aged individuals when the demand on temporal binding is minimized, showing that relational/declarative memory per se is not impaired in aging. Thus, bridging temporal intervals by dCA1 activity is a critical foundation of relational representation, and a deterioration of this mechanism is responsible for the age-associated memory impairment.


Assuntos
Envelhecimento/fisiologia , Região CA1 Hipocampal/fisiologia , Transtornos da Memória/etiologia , Memória/fisiologia , Animais , Masculino , Camundongos Endogâmicos C57BL
4.
Addict Biol ; 22(4): 898-910, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26860616

RESUMO

This study intends to determine whether long-lasting glucocorticoids (GCs) dysregulation in the prefrontal cortex (PFC) or the dorsal hippocampus (dHPC) play a causal role in the maintenance of working memory (WM) deficits observed after alcohol withdrawal. Here, we report that C57/BL6 male mice submitted to 6 months alcohol consumption (12 percent v/v) followed by 1 (1W) or 6 weeks (6W) withdrawal periods exhibit WM deficits in a spatial alternation task and an exaggerated corticosterone rise during and after memory testing in the PFC but not the dHPC. In contrast, emotional reactivity evaluated in a plus-maze is altered only in the 1W group. No behavioral alterations are observed in mice still drinking alcohol. To determine the causal role of corticosterone in the withdrawal-associated long-lasting WM deficits, we further show that a single intraperitoneal injection injection of metyrapone (an inhibitor of corticosterone synthesis) 30 minutes before testing, prevents withdrawal-associated WM deficits and reestablishes PFC activity, as assessed by increased phosphorylated C-AMP Response Element-binding protein (CREB) immunoreactivity in withdrawn mice. Finally, we show that intra-PFC blockade of mineralocorticoid receptors by infusion of spironolactone and, to a lesser extent, of GCs receptors by injection of mifepristone reverses the WM deficits induced by withdrawal whereas the same injections into the dHPC do not. Overall, our study evidences that long-lasting GCs dysfunction selectively in the PFC is responsible for the emergence and maintenance of WM impairments after withdrawal and that blocking prefrontal mineralocorticoid receptors receptors restores WM in withdrawn animals.


Assuntos
Alcoolismo/complicações , Corticosterona/sangue , Transtornos da Memória/induzido quimicamente , Memória de Curto Prazo/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Memória Espacial/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/complicações , Alcoolismo/sangue , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo , Masculino , Transtornos da Memória/sangue , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/sangue
5.
Hippocampus ; 25(7): 827-37, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25530477

RESUMO

Converging evidence indicates that pharmacologically elevating histone acetylation using post-training, systemic or intrahippocampal, administration of histone deacetylase inhibitor (HDACi) can enhance memory consolidation processes in young rodents but it is not yet clear, whether such treatment is sufficient to prevent memory impairments associated with aging. To address this question, we used a 1-day massed spatial learning task in the water maze to investigate the effects of immediate post-training injection of the HDACi trichostatin A (TSA) into the dorsal hippocampus on long-term memory consolidation in 3-4 and 18-20 month-old mice. We show that TSA improved the 24 h-memory retention for the hidden platform location in young-adults, but failed to rescue memory impairments in older mice. The results further indicate that Young-TSA mice sacrificed 1 h after training had a robust increase in histone H4 acetylation in the dorsal hippocampal CA1 region (dCA1) and the dorsomedial part of the striatum (DMS), a structure important for spatial information processing. Importantly, TSA infusion in aged mice completely rescued altered H4 acetylation in the dCA1 but failed to alleviate age-associated decreased H4 acetylation in the DMS. Moreover, intrahippocampal TSA infusion produced concomitant decreases (in adults) or increases (in older mice) of acetylated histone levels in the ventral hippocampus (vCA1 and vCA3) and the lateral amygdala, two structures critically involved in stress and emotional responses. These data suggest that the failure of post-training, intrahippocampal TSA injection to reverse age-associated memory impairments may be related to an inability to recruit appropriate circuit-specific epigenetic patterns during early consolidation processes.


Assuntos
Envelhecimento/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Aprendizagem Espacial/fisiologia , Memória Espacial/efeitos dos fármacos , Análise de Variância , Animais , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
J Neurosci ; 33(5): 1954-63, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23365234

RESUMO

Chromatin modifications, especially histone acetylation, are critically involved in gene regulation required for long-term memory processes. Increasing histone acetylation via administration of histone deacetylase inhibitors before or after a learning experience enhances memory consolidation for hippocampus-dependent tasks and rescues age-related memory impairments. Whether acutely and locally enhancing histone acetylation during early consolidation processes can operate as a switch between multiple memory systems is less clear. This study examined the short- and long-term behavioral consequences of acute intra-CA1 administration of the histone deacetylase inhibitor Trichostatin A (TSA) on cue versus place learning strategy selection after a cue-guided water maze task and competition testing performed 1 or 24 h later in mice. Here, we show that intra-CA1 TSA infusion administrated immediately post-training biased young mice away from striatum-dependent cue strategy toward hippocampus-dependent place strategy under training condition that normally promotes cue strategy in vehicle controls. However, concomitant infusions of TSA with either PKA inhibitor, Rp-cAMPS, into CA1 or cAMP analog, 8Br-cAMP, into dorsal striatum failed to bias young mice to place strategy use. Behavioral and immunohistochemical analyses further indicated that post-training TSA infusion in aged mice rescued aging-associated deregulation of H4 acetylation in the CA1 but failed to reverse phosphorylated CREB deficits and to produce strategy bias on the 24 h probe test. These findings suggest that post-training intra-CA1 TSA infusion promotes dynamic shift from striatum toward the hippocampal system in young but not aged animals, and support the possibility of a role for CREB in the TSA-mediated switch between these two memory systems.


Assuntos
Hipocampo/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Fatores Etários , Animais , Comportamento Animal/efeitos dos fármacos , Sinais (Psicologia) , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Hipocampo/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Tionucleotídeos/farmacologia
7.
Front Behav Neurosci ; 18: 1354390, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495426

RESUMO

Introduction: Epigenetic modifications have emerged as key contributors to the enduring behavioral, molecular and epigenetic neuroadaptations during withdrawal from chronic alcohol exposure. The present study investigated the long-term consequences of chronic alcohol exposure on spatial working memory (WM) and associated changes of transcriptionally repressive histone H3 lysine 9 dimethylation (H3K9me2) in the prefrontal cortex (PFC). Methods: Male C57BL/6 mice were allowed free access to either 12% (v/v) ethanol for 5 months followed by a 3-week abstinence period or water. Spatial WM was assessed through the spontaneous alternation T-maze test. Alcoholic and water mice received daily injections of GABAB agonist baclofen or saline during alcohol fading and early withdrawal. Global levels of histone modifications were determined by immunohistochemistry. Results: Withdrawal mice displayed WM impairments along with reduced prefrontal H3K9me2 levels, compared to water-drinking mice. The withdrawal-induced decrease of H3K9me2 occurred concomitantly with increased level of permissive H3K9 acetylation (H3K9ac) in the PFC. Baclofen treatment rescued withdrawal-related WM deficits and fully restored prefrontal H3K9me2 and H3K9ac. Alcohol withdrawal induced brain region-specific changes of H3K9me2 and H3K9ac after testing, with significant decreases of both histone marks in the dorsal hippocampus and no changes in the amygdala and dorsal striatum. Furthermore, the magnitude of H3K9me2 in the PFC, but not the hippocampus, significantly and positively correlated with individual WM performances. No correlation was observed between H3K9ac and behavioral performance. Results also indicate that pre-testing intraperitoneal injection of UNC0642, a selective inhibitor of histone methyltransferase G9a responsible for H3K9me2, led to WM impairments in water-drinking and withdrawal-baclofen mice. Collectively, our results demonstrate that alcohol withdrawal induced brain-region specific alterations of H3K9me2 and H3K9ac, an effect that persisted for at least three weeks after cessation of chronic alcohol intake. Conclusion: The findings suggest a role for long-lasting decreased H3K9me2 specifically in the PFC in the persistent WM impairments related to alcohol withdrawal.

8.
Neurobiol Dis ; 54: 372-81, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23376311

RESUMO

The functional relevance of septo-hippocampal cholinergic (SHC) degeneration to the degradation of hippocampus-dependent declarative memory (DM) in aging and Alzheimer's disease (AD) remains ill-defined. Specifically, selective SHC lesions often fail to induce overt memory impairments in animal models. In spite of apparent normal performance, however, neuronal activity within relevant brain structures might be altered by SHC disruption. We hypothesized that partial SHC degeneration may contribute to functional alterations within memory circuits occurring in aging before DM decline. In young adult mice, we studied the effects of behaviorally ineffective (saporin-induced) SHC lesions - similar in extent to that seen in aged animals - on activity patterns and functional connectivity between three main neural memory systems: the septo-hippocampal system, the striatum and the amygdala that sustain declarative, procedural and emotional memory, respectively. Animals were trained in a radial maze procedure dissociating the human equivalents of relational/DM and non-R/DM expressions in animals. Test-induced Fos activation pattern revealed that the partial SHC lesion significantly altered the brain's functional activities and connectivity (co-activation pattern) despite the absence of overt behavioral deficit. Specifically, hippocampal CA3 hyperactivity and abnormal septo-hippocampo-amygdalar inter-connectivity resemble those observed in aging and prodromal AD. Hence, SHC neurons critically coordinate hippocampal function in concert with extra-hippocampal structures in accordance with specific mnemonic demand. Although partial SHC degeneration is not sufficient to impact DM performance by itself, the connectivity change might predispose the emergence of subsequent DM loss when, due to additional age-related insults, the brain can no longer compensate the holistic imbalance caused by cholinergic loss.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/patologia , Encéfalo/patologia , Neurônios Colinérgicos/patologia , Memória/fisiologia , Vias Neurais/patologia , Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Neurônios Colinérgicos/metabolismo , Imuno-Histoquímica , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Vias Neurais/metabolismo
9.
Hippocampus ; 23(7): 581-91, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23436469

RESUMO

Epigenetic processes, such as histone acetylation, are critical regulators of learning and memory processes. In the present study, we investigated whether training in either a spatial or a cued water maze task undergoes selective changes of histone H3 and H4 acetylation within the hippocampus and the dorsal striatum of C57BL/6 mice. We also attempted to provide new insights into the relationships between deregulation in histone acetylation and age-associated memory deficits. In young mice, spatial training increased acetylation of histones H3 and H4 selectively in the dorsal hippocampal CA1 region and the dentate gyrus (DG) whereas cued training significantly enhanced acetylation of both histones selectively in the dorsal striatum. Our data also revealed age-related differences in histone acetylation within the hippocampus and striatum according to task demands. Specifically, age-related spatial memory deficits were associated with opposite changes of H3 (increase) and H4 (decrease) acetylation in CA1 and DG. After cued learning, both histone acetylation levels were reduced in the striatum of aged mice compared with corresponding young-adults but remained well above those of cage-controls. Collectively, our findings suggest an important role for histone acetylation in regulating the relative contributions of the hippocampus and striatum to learning spatial and cued memory tasks.


Assuntos
Envelhecimento/fisiologia , Corpo Estriado/metabolismo , Hipocampo/metabolismo , Histonas/metabolismo , Aprendizagem em Labirinto/fisiologia , Acetilação , Animais , Sinais (Psicologia) , Imuno-Histoquímica , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
10.
Hippocampus ; 23(5): 392-404, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23436341

RESUMO

Damage to anterior thalamic nuclei (ATN) is a well-known cause of diencephalic pathology that produces a range of cognitive deficits reminiscent of a hippocampal syndrome. Anatomical connections of the ATN also extend to cerebral areas that support affective cognition. Enriched environments promote recovery of declarative/relational memory after ATN lesions and are known to downregulate emotional behaviors. Hence, the performance of standard-housed and enriched ATN rats in a range of behavioral tasks engaging affective cognition was compared. ATN rats exhibited reduced anxiety responses in the elevated plus maze, increased activity and reduced corticosterone responses when exploring an open field, and delayed acquisition of a conditioned contextual fear response. ATN rats also exhibited reduced c-Fos and phosphorylated cAMP response element-binding protein (pCREB) immunoreactivity in the hippocampal formation and the amygdala after completion of the contextual fear test. Marked c-Fos hypoactivity and reduced pCREB levels were also evident in the granular retrosplenial cortex and, to a lesser extent, in the anterior cingulate cortex. Unlike standard-housed ATN rats, enriched ATN rats expressed virtually no fear of the conditioned context. These results show that the ATN regulate affective cognition and that damage to this region may produce markedly different behavioral effects as a function of environmental housing conditions.


Assuntos
Afeto/fisiologia , Núcleos Anteriores do Tálamo/fisiologia , Cognição/fisiologia , Meio Ambiente , Animais , Núcleos Anteriores do Tálamo/lesões , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Proteína de Ligação a CREB/metabolismo , Condicionamento Psicológico , Corticosterona/sangue , Agonistas de Aminoácidos Excitatórios/toxicidade , Comportamento Exploratório/fisiologia , Medo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , N-Metilaspartato/toxicidade , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-Evans
11.
J Neurosci ; 31(46): 16517-28, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22090478

RESUMO

The multiple memory systems hypothesis posits that different neural circuits function in parallel and may compete for information processing and storage. For example, instrumental conditioning would depend on the striatum, whereas spatial memory may be mediated by a circuit centered on the hippocampus. However, the nature of the task itself is not sufficient to select durably one system over the other. In this study, we investigated the effects of natural and pharmacological rewards on the selection of a particular memory system during learning. We compared the effects of food- or drug-induced activation of the reward system on cue-guided versus spatial learning using a Y-maze discrimination task. Drug-induced reward severely impaired the acquisition of a spatial discrimination task but spared the cued version of the task. Immunohistochemical analysis of the phosphorylated form of the cAMP response element binding (CREB) protein and c-Fos expression induced by behavioral testing revealed that the spatial deficit was associated with a decrease of both markers within the hippocampus and the prefrontal cortex. In contrast, drug reward potentiated the cued learning-induced CREB phosphorylation within the dorsal striatum. Administration of the protein kinase A inhibitor 8-Bromo-adenosine-3',5'-cyclic monophosphorothioate Rp isomer (Rp-cAMPS) into the dorsal striatum before training completely reversed the drug-induced spatial deficit and restored CREB phosphorylation levels within the hippocampus and the prefrontal cortex. Therefore, drug-induced striatal hyperactivity may underlie the declarative memory deficit reported here. This mechanism could represent an important early step toward the development of addictive behaviors by promoting conditioning to the detriment of more flexible forms of memory.


Assuntos
Proteína de Ligação a CREB/metabolismo , Corpo Estriado/metabolismo , Sinais (Psicologia) , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Recompensa , Transdução de Sinais/fisiologia , Percepção Espacial/fisiologia , Análise de Variância , Animais , Comportamento Animal , Mapeamento Encefálico , Comportamento de Escolha/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Discriminação Psicológica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções/métodos , Morfina/administração & dosagem , Entorpecentes/administração & dosagem , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tempo de Reação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Percepção Espacial/efeitos dos fármacos , Tionucleotídeos/farmacologia , Área Tegmentar Ventral/efeitos dos fármacos
12.
J Neurosci ; 28(1): 279-91, 2008 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-18171945

RESUMO

An increasing body of evidence indicates that the vitamin A metabolite retinoic acid (RA) plays a role in adult brain plasticity by activating gene transcription through nuclear receptors. Our previous studies in mice have shown that a moderate downregulation of retinoid-mediated transcription contributed to aging-related deficits in hippocampal long-term potentiation and long-term declarative memory (LTDM). Here, knock-out, pharmacological, and nutritional approaches were used in a series of radial-arm maze experiments with mice to further assess the hypothesis that retinoid-mediated nuclear events are causally involved in preferential degradation of hippocampal function in aging. Molecular and behavioral findings confirmed our hypothesis. First, a lifelong vitamin A supplementation, like short-term RA administration, was shown to counteract the aging-related hippocampal (but not striatal) hypoexpression of a plasticity-related retinoid target-gene, GAP43 (reverse transcription-PCR analyses, experiment 1), as well as short-term/working memory (STWM) deterioration seen particularly in organization demanding trials (STWM task, experiment 2). Second, using a two-stage paradigm of LTDM, we demonstrated that the vitamin A supplementation normalized memory encoding-induced recruitment of (hippocampo-prefrontal) declarative memory circuits, without affecting (striatal) procedural memory system activity in aged mice (Fos neuroimaging, experiment 3A) and alleviated their LTDM impairment (experiment 3B). Finally, we showed that (knock-out, experiment 4) RA receptor beta and retinoid X receptor gamma, known to be involved in STWM (Wietrzych et al., 2005), are also required for LTDM. Hence, aging-related retinoid signaling hypoexpression disrupts hippocampal cellular properties critically required for STWM organization and LTDM formation, and nutritional vitamin A supplementation represents a preventive strategy. These findings are discussed within current neurobiological perspectives questioning the historical consensus on STWM and LTDM system partition.


Assuntos
Envelhecimento/fisiologia , Hipocampo/fisiopatologia , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Memória de Curto Prazo/fisiologia , Retinoides/metabolismo , Animais , Comportamento Animal , Proteína GAP-43/metabolismo , Hipocampo/efeitos dos fármacos , Ceratolíticos/administração & dosagem , Aprendizagem em Labirinto , Transtornos da Memória/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores do Ácido Retinoico/deficiência , Receptores X de Retinoides/deficiência , Fatores de Tempo , Tretinoína/administração & dosagem , Vitamina A/uso terapêutico
13.
Behav Pharmacol ; 20(1): 45-55, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19179850

RESUMO

Few studies have investigated the effects of chronic cannabinoid exposure on memory performance and whether tolerance occurs to cannabinoid-induced memory impairment. Here, we studied the effects of repeated exposure to Delta-tetrahydrocannabinol (THC: 1 mg/kg) on spatial memory and zif268 expression in mice. One group of animals was not pretreated with THC, whereas another group was injected with 13 daily injections of THC before memory testing in the Morris water maze. Both groups were administered with THC throughout the memory-testing phase of the experiment. THC decreased spatial memory and reversal learning, even in animals that received the THC pretreatment and were tolerant to the locomotor suppressant effects of the drug. Zif268 immunoreactivity was reduced in the CA3 of the hippocampus and in the prefrontal cortex only in non-pretreated animals, indicating that although tolerance to the effects of THC on neuronal activity was evident, cannabinoid-induced memory impairment in these animals persisted even after 24 days of exposure. This study shows that after extended administration of THC, its spatial memory-impairing effects are resistant to tolerance.


Assuntos
Dronabinol/farmacologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória/efeitos dos fármacos , Comportamento Espacial/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Dronabinol/administração & dosagem , Dronabinol/efeitos adversos , Tolerância a Medicamentos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Reversão de Aprendizagem/efeitos dos fármacos , Comportamento Espacial/fisiologia
14.
Learn Mem ; 15(12): 885-94, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19050160

RESUMO

We investigated the spatio-temporal dynamics of learning-induced cAMP response element-binding protein activation/phosphorylation (pCREB) in mice trained in a spatial reference memory task in the water maze. Using immunohistochemistry, we examined pCREB immunoreactivity (pCREB-ir) in hippocampal CA1 and CA3 and related brain structures. During the course of spatial learning over Days 1-9, pCREB-ir progressively increased in hippocampal neurons whereas its level in the dorsal striatum decreased. No significant changes were observed in the prelimbic cortex and lateral amygdala. Mice killed at various time points after the last training session demonstrated two waves of pCREB-ir in CA1 and an early transient CREB phosphorylation in area CA3, lateral amygdala, and prelimbic cortex. We show that CREB phosphorylation and downstream gene Zif268 activation remained sustained in CA1 and CA3 for at least 24 h after extended training (Days 8-9) but not during early training (Day 3). The present results indicate that the strong CA1 CREB phosphorylation observed immediately after training was not related strictly to learning or to memory. In contrast, at 15 min after training, the changes in CA1 CREB phosphorylation state were specifically related to individual learning capability. We suggest that hippocampal-learning specificity of CREB is reflected best by duration, rather than magnitude, of CREB phosphorylation.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica/fisiologia , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Percepção Espacial/fisiologia , Animais , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Modelos Lineares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Fatores de Tempo
15.
Front Psychiatry ; 10: 580, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620025

RESUMO

Persistent regional glucocorticoid (GC) dysregulation in alcohol-withdrawn subjects emerges as a key factor responsible for protracted molecular and neural alterations associated with long-term cognitive dysfunction. Regional brain concentrations of corticosterone vary independently from plasma concentrations in alcohol-withdrawn subjects, which may account for the treatment of alcohol withdrawal-induced persistent pathology. Thus, from a pharmacological point of view, a main issue remains to determine the relative efficacy of compounds targeting the GC receptors to attenuate or suppress the long-lasting persistence of brain regional GC dysfunctions in abstinent alcoholics, as well as persistent changes of neural plasticity. Data from animal research show that acting directly on GC receptors during the withdrawal period, via selective antagonists, can significantly counteract the development and persistence of cognitive and neural plasticity disorders during protracted abstinence. A critical remaining issue is to better assess the relative long-term efficacy of GC antagonists and other compounds targeting the corticotropic axis activity such as gamma-aminobutyric acid A (GABAA) and GABAB agonists. Indeed, benzodiazepines (acting indirectly on GABAA receptors) and baclofen (agonist of the GABAB receptor) are the compounds most widely used to reduce alcohol dependence. Clinical and preclinical data suggest that baclofen exerts an effective and more powerful counteracting action on such persistent cognitive and endocrine dysfunctions as compared to diazepam, even though its potential negative effects on memory processes, particularly at high doses, should be better taken into account.

16.
Neurobiol Stress ; 10: 100161, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31309134

RESUMO

Exposure to prolonged, unpredictable stress leads to glucocorticoids-mediated long-lasting neuroendocrine abnormalities associated with emotional and cognitive impairments. Excessive levels of serum glucocorticoids (cortisol in humans, corticosterone in rodents) contribute notably to deficits in working memory (WM), a task which heavily relies on functional interactions between the medial prefrontal cortex (PFC) and the dorsal hippocampus (dHPC). However, it is unknown whether stress-induced increases in plasma corticosterone mirror corticosterone levels in specific brain regions critical for WM. After a 6 week-UCMS exposure, C57BL/6 J male mice exhibited increased anxiety- and depressive-like behaviors when measured one week later and displayed WM impairments timely associated with increased plasma corticosterone response. In chronically stressed mice, basal phosphorylated/activated CREB (pCREB) was markedly increased in the PFC and the CA1 area of the dHPC and WM testing did not elicit any further increase in pCREB in the two regions. Using microdialysis samples from freely-moving mice, we found that WM testing co-occurred with a rapid and sustained increase in corticosterone response in the PFC while there was a late, non-significant rise of corticosterone in the dHPC. The results also show that non-stressed mice injected with corticosterone (2 mg/kg i.p.) before WM testing displayed behavioral and molecular alterations similar to those observed in stressed animals while a pre-WM testing metyrapone injection (35 mg/kg i.p.), a corticosterone synthesis inhibitor, prevented the effects of UCMS exposure. Overall, the abnormal regional increase of corticosterone concentrations mainly in the PFC emerges as a key factor of enduring WM dysfunctions in UCMS-treated animals.

17.
Bio Protoc ; 8(12): e2888, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285997

RESUMO

Declarative memory formation depends on the hippocampus and declines in aging. Two functions of the hippocampus, temporal binding and relational organization (Rawlins and Tsaltas, 1983; Eichenbaum et al., 1992 ; Cohen et al., 1997 ), are known to decline in aging (Leal and Yassa, 2015). However, in the literature distinct procedures have been used to study these two functions. Here, we describe the experimental procedures used to investigate how these two processes are related in the formation of declarative memory and how they are compromised in aging ( Sellami et al., 2017 ). First, we studied temporal binding using a one-trial learning procedure: trace fear conditioning. It is classical Pavlovian conditioning requiring temporal binding since a brief temporal gap separates the conditioned stimulus (CS) and unconditioned stimulus (US) presentations. We combined the trace fear condition procedure with an optogenetic approach, and we showed that the temporal binding relies on dorsal (d)CA1 activity over temporal gaps. Then, we studied the interaction between temporal binding and relational organization in declarative memory formation using a two-phase radial-maze task in mice and its virtual analog in humans. The behavioral procedure comprises an initial learning phase where subjects learned the constant rewarding /no rewarding valence of each arm, followed by a test phase where the reward contingencies among the arms remained unchanged but where the arms were recombined to assess flexibility, a cardinal property of declarative memory. We demonstrated that dCA1-dependent temporal binding is necessary for the development of a relational organization of memories that allows flexible declarative memory expression. Furthermore, in aging, the degradation of declarative memory is due to a reduction of temporal binding capacity that prevents relation organization.

18.
J Neurosci ; 26(52): 13556-66, 2006 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-17192439

RESUMO

Ample data indicate that tone and contextual fear conditioning differentially require the amygdala and the hippocampus. However, mechanisms subserving the adaptive selection among environmental stimuli (discrete tone vs context) of those that best predict an aversive event are still elusive. Because the hippocampal cholinergic neurotransmission is thought to play a critical role in the coordination between different memory systems leading to the selection of appropriate behavioral strategies, we hypothesized that this cholinergic signal may control the competing acquisition of amygdala-mediated tone and contextual conditioning. Using pavlovian fear conditioning in mice, we first show a higher level of hippocampal acetylcholine release and a specific pattern of extracellular signal-regulated kinase 1/2 (ERK1/2) activation within the lateral (LA) and basolateral (BLA) amygdala under conditions in which the context is a better predictor than a discrete tone stimulus. Second, we demonstrate that levels of hippocampal cholinergic neurotransmission are causally related to the patterns of ERK1/2 activation in amygdala nuclei and actually determine the selection among the context or the simple tone the stimulus that best predicts the aversive event. Specifically, decreasing the hippocampal cholinergic signal not only impaired contextual conditioning but also mimicked conditioning to the discrete tone, both in terms of the behavioral outcome and the LA/BLA ERK1/2 activation pattern. Conversely, increasing this cholinergic signal not only disrupted tone conditioning but also promoted contextual fear conditioning. Hence, these findings highlight that hippocampal cholinergic neurotransmission controls amygdala function, thereby leading to the selection of relevant emotional information.


Assuntos
Acetilcolina/metabolismo , Tonsila do Cerebelo/fisiologia , Condicionamento Psicológico/fisiologia , Emoções/fisiologia , Líquido Extracelular/metabolismo , Hipocampo/metabolismo , Acetilcolina/fisiologia , Adaptação Psicológica/fisiologia , Animais , Líquido Extracelular/fisiologia , Medo/fisiologia , Medo/psicologia , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Pharmacol Biochem Behav ; 88(1): 55-63, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17698177

RESUMO

The original aims of our study have been to investigate in sleep-deprived mice, the effects of modafinil administration on spatial working memory, in parallel with the evaluation of neural activity level, as compared to non-sleep-deprived animals. For this purpose, an original sleep deprivation apparatus was developed and validated with continuous electroencephalography recording. Memory performance was evaluated using spontaneous alternation in a T-maze, whereas the neural activity level was estimated by the quantification of the c-Fos protein in various cerebral zones. This study allowed altogether: First, to evidence that a diurnal 10-h sleep deprivation period induced an impairment of spatial working memory. Second, to observe a decrease in c-Fos expression after sleep deprivation followed by a behavioural test, as compared to non-sleep-deprived mice. This impairment in neural activity was evidenced in areas involved in wake-sleep cycle regulation (anterior hypothalamus and supraoptic nucleus), but also in memory (frontal cortex and hippocampus) and emotions (amygdala). Finally, to demonstrate that modafinil 64 mg/kg is able to restore on the one hand memory performance after a 10-h sleep deprivation period, and on the other hand, the neural activity level in the very same brain areas where it was previously impaired by sleep deprivation and cognitive task.


Assuntos
Compostos Benzidrílicos/uso terapêutico , Estimulantes do Sistema Nervoso Central/uso terapêutico , Eletroencefalografia/efeitos dos fármacos , Memória/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Privação do Sono/tratamento farmacológico , Privação do Sono/psicologia , Animais , Genes fos/genética , Imuno-Histoquímica , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Modafinila
20.
PLoS One ; 12(9): e0184580, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28934250

RESUMO

Hereditary Huntington's disease (HD) is associated with progressive motor, cognitive and psychiatric symptoms. A primary consequence of the HD mutation is the preferential loss of medium spiny projection cells with relative sparing of local interneurons in the striatum. In addition, among GABAergic striatal projection cells, indirect pathway cells expressing D2 dopamine receptors are lost earlier than direct pathway cells expressing D1 receptors. To test in vivo the functional integrity of direct and indirect pathways as well as interneurons in the striatum of male R6/1 transgenic mice, we assessed their c-Fos expression levels induced by a striatal-dependent cognitive task and compared them with age-matched wild-type littermates. We found a significant increase of c-Fos+ nuclei in the dorsomedial striatum, and this only at 2 months, when our HD mouse model is still pre-motor symptomatic, the increase disappearing with symptom manifestation. Contrary to our expectation, the indirect pathway projection neurons did not undergo any severer changes of c-Fos expression regardless of age in R6/1 mice. We also found a decreased activation of interneurons that express parvalbumin in the dorsomedial striatum at both presymptomatic and symptomatic ages. Finally, analysis of c-Fos expression in extended brain regions involved in the cognitive learning used in our study, demonstrates, throughout ages studied, changes in the functional connectivity between regions in the transgenic mice. Further analysis of the cellular and molecular changes underlying the transient striatal hyperactivity in the HD mice may help to understand the mechanisms involved in the disease onset.


Assuntos
Condicionamento Operante/fisiologia , Corpo Estriado/metabolismo , Doença de Huntington/metabolismo , Neurônios/metabolismo , Animais , Corpo Estriado/patologia , Modelos Animais de Doenças , Progressão da Doença , Doença de Huntington/patologia , Masculino , Camundongos Transgênicos , Atividade Motora/fisiologia , Vias Neurais/metabolismo , Vias Neurais/patologia , Neurônios/patologia , Sintomas Prodrômicos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Distribuição Aleatória , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Convulsões/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA