RESUMO
OBJECTIVE: Selected populations of patients with chronic hepatitis B (CHB) may benefit from a combined use of pegylated interferon-alpha (pegIFN-α) and nucleos(t)ides (NUCs). The aim of our study was to assess the immunomodulatory effect of pegIFN-α on T and natural killer (NK) cell responses in NUC-suppressed patients to identify cellular and/or serological parameters to predict better T cell-restoring effect and better control of infection in response to pegIFN-α for a tailored application of IFN-α add-on. DESIGN: 53 HBeAg-negative NUC-treated patients with CHB were randomised at a 1:1 ratio to receive pegIFN-α-2a for 48 weeks, or to continue NUC therapy and then followed up for at least 6 months maintaining NUCs. Serum hepatitis B surface antigen (HBsAg) and hepatitis B core-related antigen (HBcrAg) levels as well as peripheral blood NK cell phenotype and function and HBV-specific T cell responses upon in vitro stimulation with overlapping HBV peptides were measured longitudinally before, during and after pegIFN-α therapy. RESULTS: Two cohorts of pegIFN-α treated patients were identified according to HBsAg decline greater or less than 0.5 log at week 24 post-treatment. PegIFN-α add-on did not significantly improve HBV-specific T cell responses during therapy but elicited a significant multispecific and polyfunctional T cell improvement at week 24 post-pegIFN-α treatment compared with baseline. This improvement was maximal in patients who had a higher drop in serum HBsAg levels and a lower basal HBcrAg values. CONCLUSIONS: PegIFN-α treatment can induce greater functional T cell improvement and HBsAg decline in patients with lower baseline HBcrAg levels. Thus, HBcrAg may represent an easily and reliably applicable parameter to select patients who are more likely to achieve better response to pegIFN-α add-on to virally suppressed patients.
Assuntos
Antivirais , Antígenos E da Hepatite B , Hepatite B Crônica , Interferon-alfa , Células Matadoras Naturais , Polietilenoglicóis , Proteínas Recombinantes , Humanos , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/imunologia , Hepatite B Crônica/sangue , Interferon-alfa/uso terapêutico , Antivirais/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Feminino , Adulto , Masculino , Polietilenoglicóis/uso terapêutico , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Pessoa de Meia-Idade , Antígenos E da Hepatite B/sangue , Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Antígenos do Núcleo do Vírus da Hepatite B/sangue , Quimioterapia Combinada , Antígenos de Superfície da Hepatite B/sangue , Vírus da Hepatite B/imunologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Resultado do Tratamento , Nucleosídeos/uso terapêuticoRESUMO
BACKGROUND: ANGPTL3 (angiopoietin-like 3) is a therapeutic target for reducing plasma levels of triglycerides and low-density lipoprotein cholesterol. A recent trial with vupanorsen, an antisense oligonucleotide targeting hepatic production of ANGPTL3, reported a dose-dependent increase in hepatic fat. It is unclear whether this adverse effect is due to an on-target effect of inhibiting hepatic ANGPTL3. METHODS: We recruited participants with ANGPTL3 deficiency related to ANGPTL3 loss-of-function (LoF) mutations, along with wild-type (WT) participants from 2 previously characterized cohorts located in Campodimele, Italy, and St. Louis, MO. Magnetic resonance spectroscopy and magnetic resonance proton density fat fraction were performed to measure hepatic fat fraction and the distribution of extrahepatic fat. To estimate the causal relationship between ANGPTL3 and hepatic fat, we generated a genetic instrument of plasma ANGPTL3 levels as a surrogate for hepatic protein synthesis and performed Mendelian randomization analyses with hepatic fat in the UK Biobank study. RESULTS: We recruited participants with complete (n=6) or partial (n=32) ANGPTL3 deficiency related to ANGPTL3 LoF mutations, as well as WT participants (n=92) without LoF mutations. Participants with ANGPTL3 deficiency exhibited significantly lower total cholesterol (complete deficiency, 78.5 mg/dL; partial deficiency, 172 mg/dL; WT, 188 mg/dL; P<0.05 for both deficiency groups compared with WT), along with plasma triglycerides (complete deficiency, 26 mg/dL; partial deficiency, 79 mg/dL; WT, 88 mg/dL; P<0.05 for both deficiency groups compared with WT) without any significant difference in hepatic fat (complete deficiency, 9.8%; partial deficiency, 10.1%; WT, 9.9%; P>0.05 for both deficiency groups compared with WT) or severity of hepatic steatosis as assessed by magnetic resonance imaging. In addition, ANGPTL3 deficiency did not alter the distribution of extrahepatic fat. Results from Mendelian randomization analyses in 36 703 participants from the UK Biobank demonstrated that genetically determined ANGPTL3 plasma protein levels were causally associated with low-density lipoprotein cholesterol (P=1.7×10-17) and triglycerides (P=3.2×10-18) but not with hepatic fat (P=0.22). CONCLUSIONS: ANGPTL3 deficiency related to LoF mutations in ANGPTL3, as well as genetically determined reduction of plasma ANGPTL3 levels, is not associated with hepatic steatosis. Therapeutic approaches to inhibit ANGPTL3 production in hepatocytes are not necessarily expected to result in the increased risk for hepatic steatosis that was observed with vupanorsen.
Assuntos
Proteína 3 Semelhante a Angiopoietina , Humanos , Proteínas Semelhantes a Angiopoietina/genética , Triglicerídeos , LDL-ColesterolRESUMO
OBJECTIVE: Familial chylomicronemia syndrome (FCS) and multifactorial chylomicronemia syndrome (MCS) are the prototypes of monogenic and polygenic conditions underlying genetically based severe hypertriglyceridemia. These conditions have been only partially investigated so that a systematic comparison of their characteristics remains incomplete. We aim to compare genetic profiles and clinical outcomes in FCS and MCS. Approach and Results: Thirty-two patients with severe hypertriglyceridemia (triglyceride >1000 mg/dL despite lipid-lowering treatments with or without history of acute pancreatitis) were enrolled. Rare and common variants were screened using a panel of 18 triglyceride-raising genes, including the canonical LPL, APOC2, APOA5, GP1HBP1, and LMF1. Clinical information was collected retrospectively for a median period of 44 months. Across the study population, 37.5% were classified as FCS due to the presence of biallelic, rare mutations and 59.4% as MCS due to homozygosity for nonpathogenic or heterozygosity for pathogenic variants in canonical genes, as well as for rare and low frequency variants in noncanonical genes. As compared with MCS, FCS patients showed a lower age of hypertriglyceridemia onset, higher levels of on-treatment triglycerides, and 3-fold higher incidence rate of acute pancreatitis. CONCLUSIONS: Our data indicate that the genetic architecture and natural history of FCS and MCS are different. FCS expressed the most severe clinical phenotype as determined by resistance to triglyceride-lowering medications and higher incidence of acute pancreatitis episodes. The most common genetic abnormality underlying FCS was represented by biallelic mutations in LPL while APOA5 variants, in combination with high rare polygenic burden, were the most frequent genotype of MCS.
Assuntos
Apolipoproteína A-V/genética , DNA/genética , Hiperlipoproteinemia Tipo I/genética , Lipase Lipoproteica/genética , Mutação , Adolescente , Adulto , Idoso , Alelos , Apolipoproteína A-V/metabolismo , Análise Mutacional de DNA , Feminino , Seguimentos , Genótipo , Humanos , Hiperlipoproteinemia Tipo I/metabolismo , Lipase Lipoproteica/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Fatores de Tempo , Adulto JovemRESUMO
BACKGROUND AND AIMS: The effective reduction of LDL-C in patients with heterozygous familial hypercholesterolemia (HeFH) is crucial to reduce their increased cardiovascular risk. Diagnostic and therapeutic (PCSK9 inhibitors) tools to manage HeFH improved in recent years. However, the impact of these progresses in ameliorating the contemporary real-world care of these patients remains to be determined. Aim of this study was to assess the evolution of treatments and LDL-C control in a cohort of HeFH patients in Italy. METHODS AND RESULTS: Four hundred six clinically diagnosed HeFH followed in a single, tertiary lipid centre were included in this survey. Data on lipid levels and medications were collected at baseline and during a median 3-year follow-up. At baseline, 19.8% of patients were receiving conventional high-potency lipid lowering therapies (LLT) and this percentage increased up to 50.8% at last visit. The knowledge of results of molecular diagnosis was associated with a significant increase in treatment intensity and LDL-C lowering. Nevertheless, the new LDL-C target (<70 mg/dl) was achieved only in 3.6% of HeFH patients under conventional LLTs and this proportion remained low (2.9%) also in those exposed to maximal conventional LLT. In 51 patients prescribed with PCSK9 inhibitors, 64.6% and 62.1% reached LDL-C<70 mg/dl at 3- and 12-month follow-up, respectively. CONCLUSIONS: Although treatments of HeFH improved over time, LDL-C target achievement with conventional LLT remains poor, mainly among women. The use of molecular diagnosis and even more the prescription of PCSK9i may improve LDL-C control in these patients.
Assuntos
Anticolesterolemiantes/uso terapêutico , LDL-Colesterol/sangue , Heterozigoto , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Padrões de Prática Médica/tendências , Adulto , Biomarcadores/sangue , Regulação para Baixo , Feminino , Predisposição Genética para Doença , Humanos , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Masculino , Pessoa de Meia-Idade , Inibidores de PCSK9 , Fenótipo , Estudos Retrospectivos , Cidade de Roma , Inibidores de Serina Proteinase/uso terapêutico , Fatores de Tempo , Resultado do TratamentoRESUMO
Tangier disease is a rare disorder of lipoprotein metabolism that presents with extremely low levels of HDL cholesterol and apoprotein A-I. It is caused by mutations in the ATP-binding cassette transporter A1 (ABCA1) gene. Clinical heterogeneity and mutational pattern of Tangier disease are poorly characterized. Moreover, also familial HDL deficiency may be caused by mutations in ABCA1 gene. ATP-binding cassette transporter A1 (ABCA1) gene mutations in a patient with Tangier disease, who presented an uncommon clinical history, and in his family were found and characterized. He was found to be compound heterozygous for two intronic mutations of ABCA1 gene, causing abnormal pre-mRNAs splicing. The novel c.1510-1Gâ¯>â¯A mutation was located in intron 12 and caused the activation of a cryptic splice site in exon 13, which determined the loss of 22 amino acids of exon 13 with the introduction of a premature stop codon. Five heterozygous carriers of this mutation were also found in proband's family, all presenting reduced HDL cholesterol and ApoAI (0.86⯱â¯0.16â¯mmol/L and 92.2⯱â¯10.9â¯mg/dL respectively), but not the typical features of Tangier disease, a phenotype compatible with the diagnosis of familial HDL deficiency. The other known mutation c.1195-27Gâ¯>â¯A was confirmed to cause aberrant retention of 25 nucleotides of intron 10 leading to the insertion of a stop codon after 20 amino acids of exon 11. Heterozygous carriers of this mutation also showed the clinical phenotype of familial HDL deficiency. Our study extends the catalog of pathogenic intronic mutations affecting ABCA1 pre-mRNA splicing. In a large family, a clear demonstration that the same mutations may cause Tangier disease (if in compound heterozygosis) or familial HDL deficiency (if in heterozygosis) is provided.
Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Hipoalfalipoproteinemias/genética , Mutação , Splicing de RNA/genética , Doença de Tangier/genética , Códon sem Sentido , Família , Feminino , Heterozigoto , Humanos , Íntrons/genética , Masculino , Linhagem , Sítios de Splice de RNA/genéticaRESUMO
OBJECTIVE: To evaluate the effectiveness of criteria based on child-parent assessment in predicting familial hypercholesterolemia (FH)-causative mutations in unselected children with hypercholesterolemia. STUDY DESIGN: LDLR, APOB, and PCSK9 genes were sequenced in 78 children and adolescents (mean age 8.4 ± 3.7 years) with clinically diagnosed FH. The presence of polygenic hypercholesterolemia was further evaluated by genotyping 6 low-density lipoprotein cholesterol (LDL-C)-raising single-nucleotide polymorphisms. RESULTS: Thirty-nine children (50.0%) were found to carry LDLR mutant alleles but none with APOB or PCSK9 mutant alleles. Overall, 27 different LDLR mutations were identified, and 2 were novel. Children carrying mutations showed higher LDL-C (215.2 ± 52.7 mg/dL vs 181.0 ± 44.6 mg/dL, P <.001) and apolipoprotein B levels (131.6 ± 38.3 mg/dL vs 100.3 ± 30.0 mg/dL, P <.004), compared with noncarriers. A LDL-C of ~190 mg/dL was the optimal value to discriminate children with and without LDLR mutations. When different diagnostic criteria were compared, those proposed by the European Atherosclerosis Society showed a reasonable balance between sensitivity and specificity in the identification of LDLR mutations. In children without mutation, the FH phenotype was not caused by the aggregation of LDL-C raising single-nucleotide polymorphisms. CONCLUSIONS: In unselected children with hypercholesterolemia, LDL-C levels >190 mg/dL and a positive family history of hypercholesterolemia appeared to be the most reliable criteria for detecting FH. As 50% of children with suspected FH did not carry FH-causing mutations, genetic testing should be considered.
Assuntos
LDL-Colesterol/genética , Predisposição Genética para Doença/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Adolescente , Distribuição por Idade , Alelos , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Testes Genéticos , Humanos , Hiperlipoproteinemia Tipo II/epidemiologia , Incidência , Masculino , Estudos Prospectivos , Medição de Risco , Sensibilidade e Especificidade , Estatísticas não ParamétricasRESUMO
Hypercholesterolaemia provokes reactive oxygen species (ROS) increase and is a major risk factor for cardiovascular disease (CVD) development. We previously showed that circulating miR-33a/b expression levels were up-regulated in children with familial hypercholesterolaemia (FH). miR-33a/b control cholesterol homoeostasis and recently miR-33b has been demonstrated to directly target the transcription factor zinc finger E-box-binding homeobox 1 (ZEB1). The latter acts in a negative feedback loop with the miR-200 family. Our previous studies showed that the ROS-dependent miR-200c up-regulation induces endothelial dysfunction and provokes a ZEB1-dependent apoptosis and senescence. In the present study, we aimed to verify whether circulating miR-200c was induced in FH children, and whether a correlation existed with miR-33a/b Total RNA was extracted from plasma of 28 FH children and 25 age-matched healthy subjects (HS) and miR-200c levels were measured. We found that miR-200c was up-regulated in FH compared with HS (4.00 ± 0.48-fold increase, P<0.05) and exhibited a positive correlation with miR-33a/b. miR-200c did not correlate with plasma lipids, but correlated with C-reactive protein (CRP) plasma levels and glycaemia (GLI). Ordinary least squares (OLS) regression analysis revealed that miR-200c was significantly affected by GLI and by miR-33a (P<0.01; P<0.001 respectively). Moreover, we found that miR-33 overexpression, in different cell lines, decreased ZEB1 expression and up-regulated both the intracellular and the extracellular miR-200c expression levels. In conclusion, circulating miR-200c is up-regulated in FH, probably due to oxidative stress and inflammation and via a miR-33a/b-ZEB1-dependent mechanism. The present study could provide the first evidence to point to the use of miR-33a/b and miR-200c, as early biomarkers of CVD, in paediatric FH.
Assuntos
Hiperlipoproteinemia Tipo II/metabolismo , MicroRNAs/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/fisiologia , Adolescente , Glicemia/análise , Proteína C-Reativa/análise , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Hiperlipoproteinemia Tipo II/genética , Masculino , MicroRNAs/sangue , Espécies Reativas de Oxigênio/metabolismo , Regulação para CimaRESUMO
The consequences of angiopoietin-like protein 3 (ANGPTL3) deficiency on postprandial lipid and lipoprotein metabolism has not been investigated in humans. We studied 7 homozygous (undetectable circulating ANGPTL3 levels) and 31 heterozygous (50% of circulating ANGPTL3 levels) subjects with familial combined hypolipidemia (FHBL2) due to inactivating ANGPTL3 mutations in comparison with 35 controls. All subjects were evaluated at fasting and during 6 h after a high fat meal. Postprandial lipid and lipoprotein changes were quantified by calculating the areas under the curve (AUCs) using the 6 h concentration data. Plasma changes of ß-hydroxybutyric acid (ß-HBA) were measured as marker of hepatic oxidation of fatty acids. Compared with controls, homozygotes showed lower incremental AUCs (iAUCs) of total TG (-69%, P < 0.001), TG-rich lipoproteins (-90%, P < 0.001), apoB-48 (-78%, P = 0.032), and larger absolute increase of FFA (128%, P < 00.1). Also, heterozygotes displayed attenuated postprandial lipemia, but the difference was significant only for the iAUC of apoB-48 (-28%; P < 0.05). During the postprandial period, homozygotes, but not heterozygotes, showed a lower increase of ß-HBA. Our findings demonstrate that complete ANGPTL3 deficiency associates with highly reduced postprandial lipemia probably due to faster catabolism of intestinally derived lipoproteins, larger expansion of the postprandial FFA pool, and decreased influx of dietary-derived fatty acids into the liver. These results add information on mechanisms underlying hypolipidemia in FHBL2.
Assuntos
Angiopoietinas/genética , Ácidos Graxos não Esterificados/sangue , Hipobetalipoproteinemias/sangue , Lipídeos/sangue , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Angiopoietinas/sangue , Angiopoietinas/deficiência , Apolipoproteína B-48/sangue , Feminino , Heterozigoto , Homozigoto , Humanos , Hipobetalipoproteinemias/genética , Hipobetalipoproteinemias/patologia , Lipoproteínas/sangue , Masculino , Pessoa de Meia-Idade , Mutação , Período Pós-Prandial , Triglicerídeos/sangueRESUMO
Hypercholesterolaemia is one of the major causes of CVD (cardiovascular disease). It is associated with enhanced oxidative stress, leading to increased lipid peroxidation which in turn determines endothelial dysfunction and susceptibility to coronary vasoconstriction and atherosclerosis. Different miRNAs are involved in the pathogenesis of CVD and play an important role in inflammatory process control, therefore, together with atherogenic factors, they can stimulate atherosclerotic degeneration of the vessel walls of arteries. miR-33a and miR-33b play a pivotal role in a variety of biological processes including cholesterol homoeostasis, HDL (high-density lipoprotein)-cholesterol formation, fatty acid oxidation and insulin signalling. Our study aimed to determine whether circulating miR-33a and miR-33b expression was altered in familial hypercholesterolaemic children. Total RNA was extracted from plasma, and miR-33a and miR-33b were measured by quantitative real-time PCR. We found that miR-33a and miR-33b were significantly up-regulated in the plasma of 28 hypercholesterolaemic children compared with 25 healthy subjects (4.49±0.27-fold increase, P<0.001, and 3.21±0.39-fold increase, P<0.05 respectively), and for both miRNAs, a positive correlation with total cholesterol, LDL (low-density lipoprotein)-cholesterol, LDL-cholesterol/HDL-cholesterol ratio, apolipoprotein B, CRP (C-reactive protein) and glycaemia was found. OLS (ordinary least squares) regression analysis revealed that miR-33a was significantly affected by the presence of FH (familial hypercholesterolaemia), glycaemia and CRP (P<0.001, P<0.05 and P<0.05 respectively). The same analysis showed that miR-33b was significantly related to FH and CRP (P<0.05 and P<0.05 respectively). Although it is only explorative, the present study could be the first to point to the use of miR-33a and miR-33b as early biomarkers for cholesterol levels in childhood, once validated in independent larger cohorts.
Assuntos
Hiperlipoproteinemia Tipo II/genética , MicroRNAs/genética , Adolescente , Idade de Início , Apolipoproteína B-100/sangue , Glicemia/análise , Proteína C-Reativa/análise , Estudos de Casos e Controles , Criança , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Feminino , Marcadores Genéticos , Humanos , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/diagnóstico , Análise dos Mínimos Quadrados , Masculino , MicroRNAs/sangue , Valor Preditivo dos Testes , Reação em Cadeia da Polimerase em Tempo Real , Regulação para CimaRESUMO
OBJECTIVE: Systemic Lupus Erythematosus (SLE) and antiphospholipid syndrome (APS) are associated with a high prevalence of atherosclerosis. ß2 glycoprotein I (ß2GPI) represents a link between autoimmunity and endothelial dysfunction. Recently, ß2GPI reactive T cells have been identified; however, their role in atherosclerosis is still under investigation. We evaluated early atherosclerosis in patients with SLE and APS and investigated T cell reactivity to ß2GPI and its relationship with atherosclerotic process. APPROACH AND RESULTS: Fifty SLE, 18 patients with primary APS (PAPS), and 25 healthy controls were enrolled. Demographic and clinical data, including traditional cardiovascular risk factors, were recorded. Monocyte ß2GPI and Tissue Factor (TF) expression and peripheral blood mononuclear cell response to ß2GPI stimulation were evaluated. Doppler ultrasound was performed to investigate flow-mediated dilatation (FMD) and carotid intima-media thickness (IMT). We detected an increase in mean IMT and a decrease in FMD in patients with SLE versus controls (P<0.05 and P=0.0001, respectively) and a decrease in FMD in patients with PAPS versus controls (P<0.05). Monocyte ß2GPI and TF expression was higher in patients with SLE and PAPS than in controls (P=0.006 and P=0.001, respectively); no correlation of monocyte ß2GPI and TF with IMT or FMD was detected. ß2GPI induced peripheral blood mononuclear cell proliferation in 32% of patients with SLE, 25% of patients with PAPS yet in none of the controls. Proliferative response to ß2GPI correlated with a history of arterial thrombosis, thrombocytopenia, and IMT >0.9 mm. CONCLUSIONS: A significant percentage of patients with SLE and PAPS show a ß2GPI-specific T cell reactivity, which is associated with subclinical atherosclerosis.
Assuntos
Síndrome Antifosfolipídica/complicações , Aterosclerose/etiologia , Autoanticorpos/imunologia , Autoantígenos/imunologia , Lúpus Eritematoso Sistêmico/complicações , Especificidade do Receptor de Antígeno de Linfócitos T , beta 2-Glicoproteína I/imunologia , Adulto , Idoso , Especificidade de Anticorpos , Síndrome Antifosfolipídica/imunologia , Pressão Sanguínea , Doenças Cardiovasculares/epidemiologia , Espessura Intima-Media Carotídea , Divisão Celular , Endotélio Vascular/fisiopatologia , Feminino , Hemorreologia , Humanos , Testes de Liberação de Interferon-gama , Lipoproteínas HDL/sangue , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Fatores de Risco , Tromboplastina/biossíntese , Tromboplastina/genética , Vasodilatação , Adulto Jovem , beta 2-Glicoproteína I/biossíntese , beta 2-Glicoproteína I/genética , beta 2-Glicoproteína I/farmacologiaRESUMO
OBJECTIVE: Angiopoietin-like 3 (Angptl3) is a regulator of lipoprotein metabolism at least by inhibiting lipoprotein lipase activity. Loss-of-function mutations in ANGPTL3 cause familial combined hypolipidemia through an unknown mechanism. APPROACH AND RESULTS: We compared lipolytic activities, lipoprotein composition, and other lipid-related enzyme/lipid transfer proteins in carriers of the S17X loss-of-function mutation in ANGPTL3 and in age- and sex-matched noncarrier controls. Gel filtration analysis revealed a severely disturbed lipoprotein profile and a reduction in size and triglyceride content of very low density lipoprotein in homozygotes as compared with heterozygotes and noncarriers. S17X homozygotes had significantly higher lipoprotein lipase activity and mass in postheparin plasma, whereas heterozygotes showed no difference in these parameters when compared with noncarriers. No changes in hepatic lipase, endothelial lipase, paraoxonase 1, phospholipid transfer protein, and cholesterol ester transfer protein activities were associated with the S17X mutation. Plasma free fatty acid, insulin, glucose, and homeostatic model assessment of insulin resistance were significantly lower in homozygous subjects compared with heterozygotes and noncarriers subjects. CONCLUSIONS: These results indicate that, although partial Angptl3 deficiency did not affect the activities of lipolytic enzymes, the complete absence of Angptl3 results in an increased lipoprotein lipase activity and mass and low circulating free fatty acid levels. This latter effect is probably because of decreased mobilization of free fatty acid from fat stores in human adipose tissue and may result in reduced hepatic very low density lipoprotein synthesis and secretion via attenuated hepatic free fatty acid supply. Altogether, Angptl3 may affect insulin sensitivity and play a role in modulating both lipid and glucose metabolism.
Assuntos
Angiopoietinas/deficiência , Ácidos Graxos não Esterificados/sangue , Hipobetalipoproteinemias/enzimologia , Resistência à Insulina , Lipase Lipoproteica/sangue , Adulto , Idoso , Análise de Variância , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Angiopoietinas/genética , Biomarcadores/sangue , Glicemia/análise , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Regulação para Baixo , Feminino , Heterozigoto , Homozigoto , Humanos , Hipobetalipoproteinemias/sangue , Hipobetalipoproteinemias/genética , Hipobetalipoproteinemias/fisiopatologia , Insulina/sangue , Itália , Modelos Lineares , Lipase/sangue , Lipoproteínas LDL/sangue , Masculino , Pessoa de Meia-Idade , Mutação , Triglicerídeos/sangue , Regulação para CimaRESUMO
Germline and somatic TP53 variants play a crucial role during tumorigenesis. However, genetic variations that solely affect the alternatively spliced p53 isoforms, p53ß and p53γ, are not fully considered in the molecular diagnosis of Li-Fraumeni syndrome and cancer. In our search for additional cancer predisposing variants, we identify a heterozygous stop-lost variant affecting the p53ß isoforms (p.*342Serext*17) in four families suspected of an autosomal dominant cancer syndrome with colorectal, breast and papillary thyroid cancers. The stop-lost variant leads to the 17 amino-acid extension of the p53ß isoforms, which increases oligomerization to canonical p53α and dysregulates the expression of p53's transcriptional targets. Our study reveals the capacity of p53ß mutants to influence p53 signalling and contribute to the susceptibility of different cancer types. These findings underscore the significance of p53 isoforms and the necessity of comprehensive investigation into the entire TP53 gene in understanding cancer predisposition.
Assuntos
Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Síndrome de Li-Fraumeni , Linhagem , Isoformas de Proteínas , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Feminino , Masculino , Síndrome de Li-Fraumeni/genética , Adulto , Pessoa de Meia-Idade , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Processamento Alternativo/genética , Neoplasias/genética , Neoplasias/metabolismoRESUMO
NK cells infiltrating Hepatocellular Carcinoma (HCC) may express residency markers such as Integrin Subunit Alpha 1 (CD49a) that have been associated with nurturing functions in the decidua, and characterized by the production of angiogenic factors as well as loss of cytotoxicity. CIBERSORT, a computational analysis method for quantifying cell fractions from bulk tissue gene expression profiles, was used to estimate the infiltrating immune cell composition of the tumor microenvironment from gene expression profiles of a large cohort of 225 HCCs in the public GEO database. Decidual-like CD49a+ NK cells, in addition to another 22 immune cell populations, were characterized and thoroughly investigated so that HCC cell heterogeneity in a large cohort of 225 HCCs from the public GEO database could be studied. An inverse correlation of the expression of CD49a+ NK-cells and CD8+ T-cells suggested a negative association with clinical outcomes. This result was confirmed in a further validation cohort of 100 HCC patients from The Cancer Genome Atlas, Liver Hepatocellular Carcinoma (TCGA-LIHC). Cox regression analysis did not identify CD49a+ cells as a variable independently associated with survival. However, a more abundant infiltrate of this subset was present in patients at a more advanced pathological and clinical HCC stage. In conclusion, we found that NK cells, with a decidual-like gene expression profile, are enriched in HCC, and their abundance increases not only in tumor size but also at advanced stages of the disease suggesting that these cells play a role in tumor growth. For this reason, these NK cells may represent a possible new target for immunotherapeutic approaches in HCC.
RESUMO
The natural history of hepatitis B virus (HBV) infection is closely dependent on the dynamic interplay between the host immune response and viral replication. Spontaneous HBV clearance in acute self-limited infection is the result of an adequate and efficient antiviral immune response. Instead, it is widely recognized that in chronic HBV infection, immunologic dysfunction contributes to viral persistence. Long-lasting exposure to high viral antigens, upregulation of multiple co-inhibitory receptors, dysfunctional intracellular signaling pathways and metabolic alterations, and intrahepatic regulatory mechanisms have been described as features ultimately leading to a hierarchical loss of effector functions up to full T-cell exhaustion.
Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B , Replicação ViralRESUMO
Monitoring antigen-specific T cell frequency and function is essential to assess the host immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we present a FluoroSpot assay for concurrently detecting ex vivo antiviral cytokine production by SARS-CoV-2-specific T cells following peptide stimulation. We then detail intracellular cytokine staining by flow cytometry to further validate the FluoroSpot assay results and define the specific T cell subpopulations. For complete details on the use and execution of this protocol, please refer to Tiezzi et al. (2023).1.
Assuntos
COVID-19 , Linfócitos T , Humanos , SARS-CoV-2 , CitocinasRESUMO
Humoral immunity is sensitive to evasion by SARS-CoV-2 mutants, but CD8 T cells seem to be more resistant to mutational inactivation. By a systematic analysis of 30 spike variant peptides containing the most relevant VOC and VOI mutations that have accumulated overtime, we show that in vaccinated and convalescent subjects, mutated epitopes can have not only a neutral or inhibitory effect on CD8 T cell recognition but can also enhance or generate de novo CD8 T cell responses. The emergence of these mutated T cell function enhancing epitopes likely reflects an epiphenomenon of SARS-CoV-2 evolution driven by antibody evasion and increased virus transmissibility. In a subset of individuals with weak and narrowly focused CD8 T cell responses selection of these heteroclitic-like epitopes may bear clinical relevance by improving antiviral protection. The functional enhancing effect of these peptides is also worth of consideration for the future development of new generation, more potent COVID-19 vaccines.
RESUMO
BACKGROUND AND AIMS: Familial chylomicronaemia syndrome (FCS) is a rare autosomal recessive disorder, resulting in elevated triglycerides (TGs), abdominal pain and pancreatitis. Treatment options are limited. Lomitapide, a microsomal triglyceride transfer protein inhibitor, is approved for the treatment of homozygous familial hypercholesterolaemia. Whether its therapeutic use may be extended to FCS remains unknown. The aim of this study was to evaluate the efficacy and safety of lomitapide in adult patients with FCS. METHODS: The open-label, single-arm 'LOCHNES' study of lomitapide in FCS enrolled patients >18 years with genetically confirmed FCS, elevated fasting TG ≥ 750 mg/dL and history of pancreatitis. Patients were administered lomitapide to the maximum tolerated dose for 26 weeks. The primary endpoint was the percent change in TGs from baseline to Week 26. RESULTS: Eighteen patients were enrolled with median baseline TG levels 1803.5 mg/dL (97.5% CI, 1452-2391 mg/dL). At Week 26, median fasting TGs were reduced to 305 mg/dL (97.5% CI 219-801 mg/dL; 70.5% reduction); median lomitapide dose was 35 mg/day; 13 patients achieved TGs ≤750 mg/dL. Adverse events were mild to moderate and mainly related to gastrointestinal tolerability. Liver imaging at baseline and Week 26 revealed hepatic fat increases from median 12.0%-32.5%, while median hepatic stiffness remained normal. No patient experienced acute pancreatitis or severe abdominal pain during lomitapide treatment. CONCLUSIONS: Lomitapide is effective and well tolerated in reducing TGs in FCS patients with a history of pancreatitis. Larger studies are warranted to determine lomitapide effectiveness in FCS.
Assuntos
Benzimidazóis , Hiperlipoproteinemia Tipo I , Dor Abdominal/epidemiologia , Adulto , Benzimidazóis/efeitos adversos , Humanos , Hiperlipoproteinemia Tipo I/tratamento farmacológico , Pancreatite/epidemiologia , Triglicerídeos/sangueRESUMO
Background Familial hypercholesterolemia (FH) may arise from deleterious monogenic variants in FH-causing genes as well as from a polygenic cause. We evaluated the relationships between monogenic FH and polygenic hypercholesterolemia in influencing the long-term response to therapy and the risk of atherosclerosis. Methods and Results A cohort of 370 patients with clinically diagnosed FH were screened for monogenic mutations and a low-density lipoprotein-rising genetic risk score >0.69 to identify polygenic cause. Medical records were reviewed to estimate the response to lipid-lowering therapies and the occurrence of major atherosclerotic cardiovascular events during a median follow-up of 31.0 months. A subgroup of patients (n=119) also underwent coronary computed tomographic angiography for the evaluation of coronary artery calcium score and severity of coronary stenosis as compared with 135 controls. Two hundred nine (56.5%) patients with hypercholesterolemia were classified as monogenic (FH/M+), 89 (24.1%) as polygenic, and 72 (19.5%) genetically undefined (FH/M-). The response to lipid-lowering therapy was poorest in monogenic, whereas it was comparable in patients with polygenic hypercholesterolemia and genetically undetermined. Mean coronary artery calcium score and the prevalence of coronary artery calcium >100 units were significantly higher in FH/M+ as compared with both FH/M- and controls. Finally, after adjustments for confounders, we observed a 5-fold higher risk of incident major atherosclerotic cardiovascular events in FH/M+ (hazard ratio, 4.8; 95% CI, 1.06-21.36; Padj=0.041). Conclusions Monogenic cause of FH is associated with lower response to conventional cholesterol-lowering therapies as well as with increased burden of coronary atherosclerosis and risk of atherosclerotic-related events. Genetic testing for hypercholesterolemia is helpful in providing important prognostic information.
Assuntos
Aterosclerose/complicações , LDL-Colesterol/sangue , Antagonistas Colinérgicos/uso terapêutico , Doença da Artéria Coronariana/complicações , Hiperlipoproteinemia Tipo II/genética , Sistema de Registros , Adulto , Aterosclerose/sangue , Aterosclerose/epidemiologia , Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/epidemiologia , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/epidemiologia , Feminino , Seguimentos , Humanos , Hiperlipoproteinemia Tipo II/complicações , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Incidência , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco , Fatores de TempoRESUMO
BACKGROUND: The lack of functional evidence for most variants detected during the molecular screening of patients with clinical familial hypercholesterolemia (FH) makes the definitive diagnosis difficult. METHODS: A total of 552 variants in LDLR, APOB, PCSK9 and LDLRAP1 genes found in 449 mutation-positive FH (FH/M+) patients were considered. Pathogenicity update was performed following the American College of Medical Genetics and Genomics (ACMG) guidelines with additional specifications on copy number variants, functional studies, in silico prediction and co-segregation criteria for LDLR, APOB and PCSK9 genes. Pathogenicity of LDLRAP1 variants was updated by using ACMG criteria with no change to original scoring. RESULTS: After reclassification, the proportion of FH/M+ carriers of pathogenic (P) or likely pathogenic (LP) variants, and FH/M+ carriers of likely benign (LB) or benign (B) variants, was higher than that defined by standard criteria (81.5% vs. 79.7% and 7.1% vs. 2.7%). The refinement of pathogenicity classification also reduced the percentage of FH with variants of uncertain significance (VUS) (17.7% vs. 11.4%). After adjustment, the FH diagnosis by refined criteria best predicted LDL-C levels (Padj <0.001). Notably, FH with VUS variants had higher LDL-C than those with LB (all Padj ≤ 0.033), but similar to those with LP variants. CONCLUSION: Accurate variant interpretation best predicts the increase of LDL-C levels and shows its clinical utility in the molecular diagnosis of FH.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Apolipoproteínas B/genética , Predisposição Genética para Doença/genética , Hiperlipoproteinemia Tipo II/genética , Mutação , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Adulto , Criança , LDL-Colesterol/metabolismo , Estudos de Coortes , Feminino , Predisposição Genética para Doença/classificação , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/metabolismo , Masculino , Pessoa de Meia-IdadeRESUMO
Current guidelines strongly recommend the identification of genetic forms of hypercholesterolemia (HC) during childhood.The usefulness of non-cholesterol sterols (NCS) in the diagnosis of genetic HC has not been fully explored. Plasma NCS were measured by gas chromatography/mass spectrometry (GC/MS) in 113 children with hypercholesterolemia affected by: autosomal dominant hypercholesterolemia (ADH), familial combined hyperlipidemia(FCHL), polygenic hypercholesterolemia (PHC), and in 79 controls to evaluate: i) plasma NCS profile in different genetic HC and ii) the usefulness of NCS for the diagnosis of HC beyond current clinical criteria. ADH was characterized by raised lathosterol/total cholesterol (TC) and reduced phytosterols/TC ratios, indicative of increased cholesterol synthesis. FCHL showed a slight increase of lathosterol/TC ratio, whereas PHC showed increased phytosterols/TC ratios, indicative of increased cholesterol absorption. In a post hoc discriminant analysis of patients with HC, lipid values correctly classified the 73% (14 of 19) of ADH, whereas the inclusion of plasma sterols allowed the correct identification of all 19 patients with ADH. FCHL was not differentiated from PHC (62 versus 69%).In conclusion, NCS measurement showed that cholesterol plasma levels are related to the cholesterol synthesis in ADH and to cholesterol absorption in PHC. NCS improve the detection of ADH in pediatric patients, whereas FCHL diagnosis is not improved.