Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1081, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875551

RESUMO

Protein-protein interactions (PPIs) are critical for biological processes and predicting the sites of these interactions is useful for both computational and experimental applications. We present a Structure-agnostic Language Transformer and Peptide Prioritization (SaLT&PepPr) pipeline to predict interaction interfaces from a protein sequence alone for the subsequent generation of peptidic binding motifs. Our model fine-tunes the ESM-2 protein language model (pLM) with a per-position prediction task to identify PPI sites using data from the PDB, and prioritizes motifs which are most likely to be involved within inter-chain binding. By only using amino acid sequence as input, our model is competitive with structural homology-based methods, but exhibits reduced performance compared with deep learning models that input both structural and sequence features. Inspired by our previous results using co-crystals to engineer target-binding "guide" peptides, we curate PPI databases to identify partners for subsequent peptide derivation. Fusing guide peptides to an E3 ubiquitin ligase domain, we demonstrate degradation of endogenous ß-catenin, 4E-BP2, and TRIM8, and highlight the nanomolar binding affinity, low off-targeting propensity, and function-altering capability of our best-performing degraders in cancer cells. In total, our study suggests that prioritizing binders from natural interactions via pLMs can enable programmable protein targeting and modulation.


Assuntos
Peptídeos , Proteínas , Peptídeos/metabolismo , Sequência de Aminoácidos , Ubiquitina-Proteína Ligases/metabolismo
2.
ACS Synth Biol ; 10(9): 2396-2408, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34399052

RESUMO

Ubiquibodies (uAbs) are a customizable proteome editing technology that utilizes E3 ubiquitin ligases genetically fused to synthetic binding proteins to steer otherwise stable proteins of interest (POIs) to the 26S proteasome for degradation. The ability of engineered uAbs to accelerate the turnover of exogenous or endogenous POIs in a post-translational manner offers a simple yet robust tool for dissecting diverse functional properties of cellular proteins as well as for expanding the druggable proteome to include tumorigenic protein families that have yet-to-be successfully drugged by conventional inhibitors. Here, we describe the engineering of uAbs composed of human carboxyl-terminus of Hsc70-interacting protein (CHIP), a highly modular human E3 ubiquitin ligase, tethered to differently designed ankyrin repeat proteins (DARPins) that bind to nonphosphorylated (inactive) and/or doubly phosphorylated (active) forms of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Two of the resulting uAbs were found to be global ERK degraders, pan-specifically capturing all endogenous ERK1/2 protein forms and redirecting them to the proteasome for degradation in different cell lines, including MCF7 breast cancer cells. Taken together, these results demonstrate how the substrate specificity of an E3 ubiquitin ligase can be reprogrammed to generate designer uAbs against difficult-to-drug targets, enabling a modular platform for remodeling the mammalian proteome.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Proteínas de Repetição de Anquirina Projetadas/química , Proteínas de Repetição de Anquirina Projetadas/metabolismo , Humanos , Fosforilação , Proteólise , Especificidade por Substrato , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
3.
J Pharm Sci ; 109(1): 429-442, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31229435

RESUMO

Concerns regarding the impact of subvisible particulate impurities on the safety and efficacy of therapeutic protein products have led manufacturers to implement strategies to minimize protein aggregation and particle formation during manufacturing, storage, and shipping. However, once these products are released, manufacturers have limited control over product handling. In this work, we investigated the effect of di(2-ethylhexyl) phthalate (DEHP) nanodroplets generated in polyvinyl chloride (PVC) bags of intravenous (IV) saline on the stability and immunogenicity of IV immunoglobulin (IVIG) formulations. We showed that PVC IV bags containing saline can release DEHP droplets into the solution when agitated or transported using a pneumatic tube transportation system in a clinical setting. We next investigated the effects of emulsified DEHP nanodroplets on IVIG stability and immunogenicity. IVIG adsorbed strongly to DEHP nanodroplets, forming a monolayer. In addition, DEHP nanodroplets accelerated IVIG aggregation in agitated samples. The immunogenicity of DEHP nanodroplets and IVIG aggregates generated in these formulations were evaluated using an in vitro assay of complement activation in human serum. The results suggested DEHP nanodroplets shed from PVC IV bags could reduce protein stability and induce activation of the complement system, potentially contributing to adverse immune responses during the administration of therapeutic proteins.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Dietilexilftalato/química , Imunoglobulinas Intravenosas/química , Fatores Imunológicos/sangue , Nanopartículas/química , Cloreto de Polivinila/química , Agregados Proteicos , Complemento C3a/análise , Complemento C4a/análise , Dietilexilftalato/toxicidade , Contaminação de Medicamentos/prevenção & controle , Embalagem de Medicamentos , Estabilidade de Medicamentos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Nanopartículas/toxicidade , Tamanho da Partícula , Plastificantes/química , Plastificantes/toxicidade , Estabilidade Proteica , Reologia , Propriedades de Superfície
4.
J Pharm Sci ; 109(12): 3716-3727, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32931778

RESUMO

The filoviruses Zaire ebolavirus (EBOV), Marburg marburgvirus (MARV), and Sudan ebolavirus (SUDV) are some of the most lethal infectious agents known. To date, the Zaire ebolavirus vaccine (ERVEBO®) is the only United States Food and Drug Administration (FDA) approved vaccine available for any species of filovirus. However, the ERVEBO® vaccine requires cold-chain storage not to exceed -60 °C. Such cold-chain requirements are difficult to maintain in low- and middle-income countries where filovirus outbreaks originate. To improve the thermostability of filovirus vaccines in order to potentially relax or eliminate these cold-chain requirements, monovalent subunit vaccines consisting of glycoproteins from EBOV, MARV, and SUDV were stabilized within amorphous disaccharide glasses through lyophilization. Lyophilized formulations and liquid controls were incubated for up to 12 weeks at 50 °C to accelerate degradation. To identify a stability-indicating assay appropriate for monitoring protein degradation and immunogenicity loss during these accelerated stability studies, filovirus glycoprotein secondary, tertiary, and quaternary structures and vaccine immunogenicity were measured. Size-exclusion chromatography was the most sensitive indicator of glycoprotein stability in the various formulations for all three filovirus immunogens. Degradation of the test vaccines during accelerated stability studies was reflected in changes in quaternary structure, which were discernible with size-exclusion chromatography. Filovirus glycoproteins in glassy lyophilized formulations retained secondary, tertiary, and quaternary protein structure over the incubation period, whereas the proteins within liquid controls both aggregated to form higher molecular weight species and dissociated from their native quaternary structure to form a variety of structurally-perturbed lower molecular weight species.


Assuntos
Ebolavirus , Glicoproteínas , Doença pelo Vírus Ebola , Marburgvirus , Vacinas , Ebolavirus/imunologia , Marburgvirus/imunologia
5.
J Pharm Sci ; 108(1): 162-172, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30395835

RESUMO

Silicone oil, used as a lubricating coating in pharmaceutical containers, has been implicated as a cause of therapeutic protein aggregation. After adsorbing to silicone oil-water interfaces, proteins may form interfacial gels, which can be transported into solution as insoluble aggregates if the interfaces are perturbed. Mechanical interfacial perturbation of both monomeric recombinant human interleukin-1 receptor antagonist (rhIL-1ra) and PEGylated rhIL-1ra (PEG rhIL-1ra) in siliconized syringes resulted in losses of soluble monomeric protein. However, the loss of rhIL-1ra was twice that for PEG rhIL-1ra; even though in solution, PEG rhIL-1ra had a lower ΔGunf and exhibited a more perturbed tertiary structure at the interface. Net protein-protein interactions in solution for rhIL-1ra were attractive but increased steric repulsion because of PEGylation led to net repulsive interactions for PEG rhIL-1ra. Attractive interactions for rhIL-1ra were associated with increases in intermolecular ß-sheet content at the interface, whereas no intermolecular ß-sheet structures were observed for adsorbed PEG rhIL-1ra. rhIL-1ra formed interfacial gels that were 5 times stronger than those formed by PEG rhIL-1ra. Thus, the steric repulsion contributed by the PEGylation resulted in decreased interfacial gelation and in the reduction of aggregation, in spite of the destabilizing effects of PEGylation on the protein's conformational stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA