Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Evol Biol ; 37(7): 807-817, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38703094

RESUMO

Understanding the influence of social interactions on individual fitness is key to improving our predictions of phenotypic evolution. However, we often overlook the different components of selection regimes arising from interactions among organisms, including social, correlational, and indirect selection. This is due to the challenging sampling efforts required in natural populations to measure phenotypes expressed during interactions and individual fitness. Furthermore, behaviours are crucial in mediating social interactions, yet few studies have explicitly quantified these selection components on behavioural traits. In this study, we capitalize on an online multiplayer video game as a source of extensive data recording direct social interactions among prey, where prey collaborate to escape a predator in realistic ecological settings. We estimate natural and social selection and their contribution to total selection on behavioural traits mediating competition, cooperation, and predator-prey interactions. Behaviours of other prey in a group impact an individual's survival, and thus are under social selection. Depending on whether selection pressures on behaviours are synergistic or conflicting, social interactions enhance or mitigate the strength of natural selection, although natural selection remains the main driving force. Indirect selection through correlations among traits also contributed to the total selection. Thus, failing to account for the effects of social interactions and indirect selection would lead to a misestimation of the total selection acting on traits. Dissecting the contribution of each component to the total selection differential allowed us to investigate the causal mechanisms relating behaviour to fitness and quantify the importance of the behaviours of conspecifics as agents of selection. Our study emphasizes that social interactions generate complex selective regimes even in a relatively simple ecological environment.


Assuntos
Seleção Genética , Animais , Interação Social , Comportamento Predatório , Jogos de Vídeo , Evolução Biológica
2.
Oecologia ; 202(4): 669-684, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37540236

RESUMO

Lures and other adaptations for prey attraction are particularly interesting from an evolutionary viewpoint because they are characterized by correlational selection, involve multicomponent signals, and likely reflect a compromise between maximizing conspicuousness to prey while avoiding drawing attention of enemies and predators. Therefore, investigating the evolution of lure and prey-attraction adaptations can help us understand a larger set of traits governing interactions among organisms. We review the literature focusing on spiders (Araneae), which is the most diverse animal group using prey attraction and show that the evolution of prey-attraction strategies must be driven by a trade-off between foraging and predator avoidance. This is because increasing detectability by potential prey often also results in increased detectability by predators higher in the food chain. Thus increasing prey attraction must come at a cost of increased risk of predation. Given this trade-off, we should expect lures and other prey-attraction traits to remain suboptimal despite a potential to reach an optimal level of attractiveness. We argue that the presence of this trade-off and the multivariate nature of prey-attraction traits are two important mechanisms that might maintain the diversity of prey-attraction strategies within and between species. Overall, we aim to stimulate research on this topic and progress in our general understanding of the diversity of predator and prey interactions.


Assuntos
Aranhas , Animais , Aranhas/anatomia & histologia , Aranhas/classificação , Aranhas/fisiologia , Comportamento Predatório , Comportamento Animal , Adaptação Fisiológica , Seleção Genética
3.
Oecologia ; 196(3): 649-665, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34159423

RESUMO

By shaping where individuals move, habitat configuration can fundamentally structure animal populations. Yet, we currently lack a framework for generating quantitative predictions about the role of habitat configuration in modulating population outcomes. To address this gap, we propose a modelling framework inspired by studies using networks to characterize habitat connectivity. We first define animal habitat networks, explain how they can integrate information about the different configurational features of animal habitats, and highlight the need for a bottom-up generative model that can depict realistic variations in habitat potential connectivity. Second, we describe a model for simulating animal habitat networks (available in the R package AnimalHabitatNetwork), and demonstrate its ability to generate alternative habitat configurations based on empirical data, which forms the basis for exploring the consequences of alternative habitat structures. Finally, we lay out three key research questions and demonstrate how our framework can address them. By simulating the spread of a pathogen within a population, we show how transmission properties can be impacted by both local potential connectivity and landscape-level characteristics of habitats. Our study highlights the importance of considering the underlying habitat configuration in studies linking social structure with population-level outcomes.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais
4.
Oecologia ; 189(3): 803-813, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30810801

RESUMO

Climate change-induced phenological variation in amphibians can disrupt time-sensitive processes such as breeding, hatching, and metamorphosis, and can consequently alter size-dependent interactions such as predation. Temperature can further alter size-dependent, predator-prey relationships through changes in species' behavior. We thus hypothesized that phenological shifts due to climate warming would alter the predator-prey dynamic in a larval amphibian community through changes in body size and behavior of both the predator and prey. We utilized an amphibian predator-prey system common to the montane wetlands of the U.S. Pacific Northwest: the long-toed salamander (Ambystoma macrodactylum) and its anuran prey, the Pacific chorus frog (Pseudacris regilla). We conducted predation trials to test if changes in predator phenology and environmental temperature influence predation success. We simulated predator phenological shifts using different size classes of the long-toed salamander representing an earlier onset of breeding while using spring temperatures corresponding to early and mid-season larval rearing conditions. Our results indicated that the predator-prey dynamic was highly dependent upon predator phenology and temperature, and both acted synergistically. Increased size asymmetry resulted in higher tadpole predation rates and tadpole tail damage. Both predators and prey altered activity and locomotor performance in warmer treatments. Consequently, behavioral modifications resulted in decreased survival rates of tadpoles in the presence of large salamander larvae. If predators shift to breed disproportionately earlier than prey due to climate warming, this has the potential to negatively impact tadpole populations in high-elevation amphibian assemblages through changes in predation rates mediated by behavior.


Assuntos
Comportamento Predatório , Urodelos , Ambystoma , Animais , Larva , Noroeste dos Estados Unidos
5.
J Anim Ecol ; 86(2): 213-226, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27859289

RESUMO

Despite a central line of research aimed at quantifying relationships between mating success and sexually dimorphic traits (e.g., ornaments), individual variation in sexually selected traits often explains only a modest portion of the variation in mating success. Another line of research suggests that a significant portion of the variation in mating success observed in animal populations could be explained by correlational selection, where the fitness advantage of a given trait depends on other components of an individual's phenotype and/or its environment. We tested the hypothesis that interactions between multiple traits within an individual (phenotype dependence) or between an individual's phenotype and its social environment (context dependence) can select for individual differences in behaviour (i.e., personality) and social plasticity. To quantify the importance of phenotype- and context-dependent selection on mating success, we repeatedly measured the behaviour, social environment and mating success of about 300 male stream water striders, Aquarius remigis. Rather than explaining individual differences in long-term mating success, we instead quantified how the combination of a male's phenotype interacted with the immediate social context to explain variation in hour-by-hour mating decisions. We suggest that this analysis captures more of the mechanisms leading to differences in mating success. Males differed consistently in activity, aggressiveness and social plasticity. The mating advantage of these behavioural traits depended on male morphology and varied with the number of rival males in the pool, suggesting mechanisms selecting for consistent differences in behaviour and social plasticity. Accounting for phenotype and context dependence improved the amount of variation in male mating success we explained statistically by 30-274%. Our analysis of the determinants of male mating success provides important insights into the evolutionary forces that shape phenotypic variation. In particular, our results suggest that sexual selection is likely to favour individual differences in behaviour, social plasticity (i.e., individuals adjusting their behaviour), niche preference (i.e., individuals dispersing to particular social conditions) or social niche construction (i.e., individuals modifying the social environment). The true effect of sexual traits can only be understood in interaction with the individual's phenotype and environment.


Assuntos
Heterópteros/fisiologia , Preferência de Acasalamento Animal , Fenótipo , Animais , Feminino , Masculino , Personalidade , Reprodução , Comportamento Social
6.
Am Nat ; 187(6): 776-85, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27172596

RESUMO

The social niche specialization hypothesis predicts that animal personalities emerge as a result of individuals occupying different social niches within a group. Here we track individual personality and performance and collective performance among groups of social spiders where we manipulated the familiarity of the group members. We show that individual personalities, as measured by consistent individual differences in boldness behavior, strengthen with increasing familiarity and that these personalities can be disrupted by a change in group membership. Changing group membership negatively impacted both individual and group performance. Individuals in less familiar groups lost weight, and these groups were less successful at performing vital collective tasks. These results provide a mechanism for the evolution of stable social groups by demonstrating that social niche reestablishment carries a steep cost for both individuals and groups. Social niche specialization may therefore provide a potential first step on the path toward more organized social systems.


Assuntos
Comportamento Social , Aranhas/fisiologia , Animais , Peso Corporal , Feminino , Gryllidae , Personalidade , Comportamento Predatório
7.
J Anim Ecol ; 85(4): 915-26, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26937627

RESUMO

1. Developmental experience, for example food abundance during juvenile stages, is known to affect life history and behaviour. However, the life history and behavioural consequences of developmental experience have rarely been studied in concert. As a result, it is still unclear whether developmental experience affects behaviour through changes in life history, or independently of it. 2. The effect of developmental experience on life history and behaviour may also be masked or affected by individual condition during adulthood. Thus, it is critical to tease apart the effects of developmental experience and current individual condition on life history and behaviour. 3. In this study, we manipulated food abundance during development in the western black widow spider, Latrodectus hesperus, by rearing spiders on either a restricted or ad lib diet. We separated developmental from condition-dependent effects by assaying adult foraging behaviour (tendency to attack prey and to stay on out of the refuge following an attack) and web structure multiple times under different levels of satiation following different developmental treatments. 4. Spiders reared under food restriction matured slower and at a smaller size than spiders reared in ad lib conditions. Spiders reared on a restricted diet were more aggressive towards prey and built webs structured for prey capture, while spiders reared on an ad lib diet were less aggressive and built safer webs. Developmental treatment affected which traits were plastic as adults: restricted spiders built safer webs when their adult condition increased, while ad lib spiders reduced their aggression when their adult condition increased. The amount of individual variation in behaviour and web structure varied with developmental treatment. Spiders reared on a restricted diet exhibited consistent variation in all aspects of foraging behaviour and web structure, while spiders reared on an ad lib diet exhibited consistent individual variation in aggression and web weight only. 5. Developmental experience affected the average life history, behaviour and web structure of spiders, but also shaped the amount of phenotypic variation observed among individuals. Surprisingly, developmental experience also determined the particular way in which individuals plastically adjusted their behaviour and web structure to changes in adult condition.


Assuntos
Viúva Negra/crescimento & desenvolvimento , Privação de Alimentos , Estágios do Ciclo de Vida , Agressão , Animais , Comportamento Apetitivo , Viúva Negra/fisiologia , Feminino , Comportamento Predatório
8.
J Anim Ecol ; 85(1): 125-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26332682

RESUMO

Understanding patterns of non-random mating is central to predicting the consequences of sexual selection. Most studies quantifying assortative mating focus on testing for correlations among partners' phenotypes in mated pairs. Few studies have distinguished between assortative mating arising from preferences for similar partners (expressed by all or a subset of the population) vs. from phenotypic segregation in the environment. Also, few studies have assessed the robustness of assortative mating against temporal changes in social conditions. We tracked multiple matings by stream water striders (Aquarius remigis) across variable social conditions to investigate mating patterns by both body size and behavioural type (personality). We documented temporal changes in partner availability and used a mixed model approach to analyse individual behaviours and changes in mating status recorded on an hourly basis. We assessed whether all or only a subset of individuals in the population expressed a tendency to mate with similar phenotypes. Our analyses took into account variation in the level of competition and in the phenotypes of available partners. Males and females exhibited significant assortative mating by body size: the largest males and females, and the smallest males and females mated together more often than random. However, individuals of intermediate size were equally likely to mate with small, intermediate or large partners. Individuals also displayed two contrasting patterns of assortative mating by personality (activity level). Individuals generally mated preferentially with partners of similar activity level. However, beyond that general trend, individuals with more extreme personalities tended to exhibit disassortative mating: the most active males mated disproportionately with less active females and the least active males tended to mate with more active females. Our analyses thus revealed multiple, distinct patterns of nonrandom mating. These mating patterns did not arise from differences in partner availability among individuals and were robust to temporal changes in social conditions. Hence, mating patterns likely reflect mate preferences or arise from male-male competition coupled with sexual conflict. Our study also stresses the importance of accounting for variation in partner availability and demonstrates the influence of behavioural variation on mating patterns.


Assuntos
Tamanho Corporal/fisiologia , Heterópteros/fisiologia , Preferência de Acasalamento Animal , Animais , Feminino , Masculino , Modelos Biológicos , Personalidade , Fenótipo , Fatores de Tempo
9.
Am Nat ; 195(2): 393, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32017613
10.
J Anim Ecol ; 83(3): 720-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24180283

RESUMO

Understanding the causes of animal personality (i.e. consistent behavioural differences) is a major aim of evolutionary studies. Recent theoretical work suggests that major personality traits may contribute to evolutionary trade-offs. However, such associations have only been investigated in a few study systems, and even less so in free ranging animal populations. Eastern chipmunks exhibit consistent individual differences in exploration, ranging from slow to fast. Birth cohorts also experience dramatic differences in age at first breeding opportunity due to annual differences in beech mast. Individuals may breed for the first time at 24, 33 or 50% of their average life span, depending on year of birth. Here, we used data from a long-term survey on a wild population to investigate the relationship between reproductive life history and consistent individual differences in exploration. We determined whether predictable differences in age at first breeding opportunity among birth cohorts were associated with exploration differences and favoured individuals with different exploration. Birth cohorts with a predictably earlier age at first breeding opportunity were faster explorers on average. Slower explorers displayed their highest fecundity (females) or highest fertilization success (males) later in their life compared with faster explorers. Overall, slow explorers attained a higher lifetime reproductive success than fast explorers when given an opportunity to reproduce later in their life. Our results suggest that the timing of mating seasons, associated with fluctuating food abundance, may favour individual variation in exploration and maintain population variation through its effects on reproductive life history. Together, our result shed light on how fluctuation in ecological conditions may maintain personality differences and on the nature of the relationships between animal personality and life history.


Assuntos
Comportamento Exploratório , Reprodução , Sciuridae/fisiologia , Fatores Etários , Animais , Evolução Biológica , Quebeque , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA