Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nucleic Acids Res ; 52(5): 2290-2305, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38113270

RESUMO

Phase separation regulates fundamental processes in gene expression and is mediated by the local concentration of proteins and nucleic acids, as well as nucleic acid secondary structures such as G-quadruplexes (G4s). These structures play fundamental roles in both host gene expression and in viral replication due to their peculiar localisation in regulatory sequences. Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) is an episomal minichromosome whose persistence is at the basis of chronic infection. Identifying the mechanisms controlling its transcriptional activity is indispensable to develop new therapeutic strategies against chronic hepatitis B. The aim of this study was to determine whether G4s are formed in cccDNA and regulate viral replication. Combining biochemistry and functional studies, we demonstrate that cccDNA indeed contains ten G4s structures. Furthermore, mutations disrupting two G4s located in the enhancer I HBV regulatory region altered cccDNA transcription and viral replication. Finally, we showed for the first time that cccDNA undergoes phase separation in a G4-dependent manner to promote its transcription in infected hepatocytes. Altogether, our data give new insight in the transcriptional regulation of the HBV minichromosome that might pave the way for the identification of novel targets to destabilize or silence cccDNA.


Assuntos
Quadruplex G , Hepatite B Crônica , Humanos , Vírus da Hepatite B/genética , DNA Circular/genética , DNA Circular/metabolismo , Separação de Fases , DNA Viral/genética , DNA Viral/metabolismo , Hepatite B Crônica/genética , Hepatite B Crônica/metabolismo , Hepatócitos/metabolismo , Replicação Viral/genética
2.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33879615

RESUMO

Viral hepatitis is growing into an epidemic illness, and it is urgent to neutralize the main culprit, hepatitis B virus (HBV), a small-enveloped retrotranscribing DNA virus. An intriguing observation in HB virion morphogenesis is that capsids with immature genomes are rarely enveloped and secreted. This prompted, in 1982, the postulate that a regulated conformation switch in the capsid triggers envelopment. Using solid-state NMR, we identified a stable alternative conformation of the capsid. The structural variations focus on the hydrophobic pocket of the core protein, a hot spot in capsid-envelope interactions. This structural switch is triggered by specific, high-affinity binding of a pocket factor. The conformational change induced by the binding is reminiscent of a maturation signal. This leads us to formulate the "synergistic double interaction" hypothesis, which explains the regulation of capsid envelopment and indicates a concept for therapeutic interference with HBV envelopment.


Assuntos
Proteínas do Capsídeo/química , Vírus da Hepatite B/química , Conformação Proteica
3.
Eur Biophys J ; 50(3-4): 411-427, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33881594

RESUMO

Microscale thermophoresis (MST), and the closely related Temperature Related Intensity Change (TRIC), are synonyms for a recently developed measurement technique in the field of biophysics to quantify biomolecular interactions, using the (capillary-based) NanoTemper Monolith and (multiwell plate-based) Dianthus instruments. Although this technique has been extensively used within the scientific community due to its low sample consumption, ease of use, and ubiquitous applicability, MST/TRIC has not enjoyed the unambiguous acceptance from biophysicists afforded to other biophysical techniques like isothermal titration calorimetry (ITC) or surface plasmon resonance (SPR). This might be attributed to several facts, e.g., that various (not fully understood) effects are contributing to the signal, that the technique is licensed to only a single instrument developer, NanoTemper Technology, and that its reliability and reproducibility have never been tested independently and systematically. Thus, a working group of ARBRE-MOBIEU has set up a benchmark study on MST/TRIC to assess this technique as a method to characterize biomolecular interactions. Here we present the results of this study involving 32 scientific groups within Europe and two groups from the US, carrying out experiments on 40 Monolith instruments, employing a standard operation procedure and centrally prepared samples. A protein-small molecule interaction, a newly developed protein-protein interaction system and a pure dye were used as test systems. We characterized the instrument properties and evaluated instrument performance, reproducibility, the effect of different analysis tools, the influence of the experimenter during data analysis, and thus the overall reliability of this method.


Assuntos
Benchmarking , Laboratórios , Calorimetria , Reprodutibilidade dos Testes , Temperatura
4.
PLoS Pathog ; 14(3): e1006908, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29505618

RESUMO

Amino-acid coevolution can be referred to mutational compensatory patterns preserving the function of a protein. Viral envelope glycoproteins, which mediate entry of enveloped viruses into their host cells, are shaped by coevolution signals that confer to viruses the plasticity to evade neutralizing antibodies without altering viral entry mechanisms. The functions and structures of the two envelope glycoproteins of the Hepatitis C Virus (HCV), E1 and E2, are poorly described. Especially, how these two proteins mediate the HCV fusion process between the viral and the cell membrane remains elusive. Here, as a proof of concept, we aimed to take advantage of an original coevolution method recently developed to shed light on the HCV fusion mechanism. When first applied to the well-characterized Dengue Virus (DENV) envelope glycoproteins, coevolution analysis was able to predict important structural features and rearrangements of these viral protein complexes. When applied to HCV E1E2, computational coevolution analysis predicted that E1 and E2 refold interdependently during fusion through rearrangements of the E2 Back Layer (BL). Consistently, a soluble BL-derived polypeptide inhibited HCV infection of hepatoma cell lines, primary human hepatocytes and humanized liver mice. We showed that this polypeptide specifically inhibited HCV fusogenic rearrangements, hence supporting the critical role of this domain during HCV fusion. By combining coevolution analysis and in vitro assays, we also uncovered functionally-significant coevolving signals between E1 and E2 BL/Stem regions that govern HCV fusion, demonstrating the accuracy of our coevolution predictions. Altogether, our work shed light on important structural features of the HCV fusion mechanism and contributes to advance our functional understanding of this process. This study also provides an important proof of concept that coevolution can be employed to explore viral protein mediated-processes, and can guide the development of innovative translational strategies against challenging human-tropic viruses.


Assuntos
Evolução Molecular , Hepacivirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Hepatite C/metabolismo , Hepatite C/patologia , Hepatite C/virologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Células Tumorais Cultivadas , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Replicação Viral
5.
Angew Chem Int Ed Engl ; 57(17): 4787-4791, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29457857

RESUMO

Viral membrane proteins are prime targets in combatting infection. Still, the determination of their structure remains a challenge, both with respect to sample preparation and the need for structural methods allowing for analysis in a native-like lipid environment. Cell-free protein synthesis and solid-state NMR spectroscopy are promising approaches in this context, the former with respect to its great potential in the native expression of complex proteins, and the latter for the analysis of membrane proteins in lipids. Herein, we show that milligram amounts of the small envelope protein of the duck hepatitis B virus (DHBV) can be produced by cell-free expression, and that the protein self-assembles into subviral particles. Proton-detected 2D NMR spectra recorded at a magic-angle-spinning frequency of 110 kHz on <500 µg protein show a number of isolated peaks with line widths comparable to those of model membrane proteins, paving the way for structural studies of this protein that is homologous to a potential drug target in HBV infection.


Assuntos
Vírus da Hepatite B/química , Ressonância Magnética Nuclear Biomolecular , Proteínas da Matriz Viral/química , Sistema Livre de Células , Conformação Proteica
6.
Biochemistry ; 56(24): 3029-3048, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28535337

RESUMO

Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a RNA-binding phosphoprotein composed of a N-terminal membrane anchor (AH), a structured domain 1 (D1), and two intrinsically disordered domains (D2 and D3). The knowledge of the functional architecture of this multifunctional protein remains limited. We report here that NS5A-D1D2D3 produced in a wheat germ cell-free system is obtained under a highly phosphorylated state. Its NMR analysis revealed that these phosphorylations do not change the disordered nature of D2 and D3 domains but increase the number of conformers due to partial phosphorylations. By combining NMR and small angle X-ray scattering, we performed a comparative structural characterization of unphosphorylated recombinant D2 domains of JFH1 (genotype 2a) and the Con1 (genotype 1b) strains produced in Escherichia coli. These analyses highlighted a higher intrinsic folding of the latter, revealing the variability of intrinsic conformations in HCV genotypes. We also investigated the effect of D2 mutations conferring resistance of HCV replication to cyclophilin A (CypA) inhibitors on the structure of the recombinant D2 Con1 mutants and their binding to CypA. Although resistance mutations D320E and R318W could induce some local and/or global folding perturbation, which could thus affect the kinetics of conformer interconversions, they do not significantly affect the kinetics of CypA/D2 interaction measured by surface plasmon resonance (SPR). The combination of all our data led us to build a model of the overall structure of NS5A, which provides a useful template for further investigations of the structural and functional features of this enigmatic protein.


Assuntos
Antivirais/farmacologia , Ciclosporina/farmacologia , Farmacorresistência Viral/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Mutação , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacos , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Proteica
7.
AAPS PharmSciTech ; 18(4): 1070-1083, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27975192

RESUMO

The control over the crystallinity of chitosan and chitosan/ovalbumin films can be achieved via an appropriate balance of the hydrophilic/hydrophobic interactions during the film formation process, which then controls the release kinetics of ovalbumin. Chitosan films were prepared by solvent casting. The presence of the anhydrous allomorph can be viewed as a probe of the hydrophobic conditions at the neutralization step. The semicrystalline structure, the swelling behavior of the films, the protein/chitosan interactions, and the release behavior of the films were impacted by the DA and the film processing parameters. At low DAs, the chitosan films neutralized in the solid state corresponded to the most hydrophobic environment, inducing the crystallization of the anhydrous allomorph with and without protein. The most hydrophilic conditions, leading to the hydrated allomorph, corresponded to non-neutralized films for the highest DAs. For the non-neutralized chitosan acetate (amorphous) films, the swelling increased when the DA decreased, whereas for the neutralized chitosan films, the swelling decreased. The in vitro release of ovalbumin (model protein) from chitosan films was controlled by their swelling behavior. For fast swelling films (DA = 45%), a burst effect was observed. On the contrary, a lag time was evidenced for DA = 2.5% with a limited release of the protein. Furthermore, by blending chitosans (DA = 2.5% and 45%), the release behavior was improved by reducing the burst effect and the lag time. The secondary structure of ovalbumin was partially maintained in the solid state, and the ovalbumin was released under its native form.


Assuntos
Quitosana , Interações Hidrofóbicas e Hidrofílicas , Ovalbumina , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Quitosana/química , Quitosana/farmacologia , Cristalização , Sistemas de Liberação de Medicamentos , Ovalbumina/química , Ovalbumina/farmacocinética
8.
J Biol Chem ; 290(20): 12951-63, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25837252

RESUMO

The taurocyamine kinase from the blood fluke Schistosoma mansoni (SmTK) belongs to the phosphagen kinase (PK) family and catalyzes the reversible Mg(2+)-dependent transfer of a phosphoryl group between ATP and taurocyamine. SmTK is derived from gene duplication, as are all known trematode TKs. Our crystallographic study of SmTK reveals the first atomic structure of both a TK and a PK with a bilobal structure. The two unliganded lobes present a canonical open conformation and interact via their respective C- and N-terminal domains at a helix-mediated interface. This spatial arrangement differs from that observed in true dimeric PKs, in which both N-terminal domains make contact. Our structures of SmTK complexed with taurocyamine or l-arginine compounds explain the mechanism by which an arginine residue of the phosphagen specificity loop is crucial for substrate specificity. An SmTK crystal was soaked with the dead end transition state analog (TSA) components taurocyamine-NO3 (2-)-MgADP. One SmTK monomer was observed with two bound TSAs and an asymmetric conformation, with the first lobe semiclosed and the second closed. However, isothermal titration calorimetry and enzyme kinetics experiments showed that the two lobes function independently. A small angle x-ray scattering model of SmTK-TSA in solution with two closed active sites was generated.


Assuntos
Proteínas de Helminto/química , Modelos Moleculares , Fosfotransferases (Aceptor do Grupo Nitrogenado)/química , Schistosoma mansoni/enzimologia , Taurina/análogos & derivados , Animais , Cristalografia por Raios X , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Taurina/química
9.
J Biol Chem ; 290(31): 19104-20, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26085105

RESUMO

Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) and its interaction with the human chaperone cyclophilin A are both targets for highly potent and promising antiviral drugs that are in the late stages of clinical development. Despite its high interest in regards to the development of drugs to counteract the worldwide HCV burden, NS5A is still an enigmatic multifunctional protein poorly characterized at the molecular level. NS5A is required for HCV RNA replication and is involved in viral particle formation and regulation of host pathways. Thus far, no enzymatic activity or precise molecular function has been ascribed to NS5A that is composed of a highly structured domain 1 (D1), as well as two intrinsically disordered domains 2 (D2) and 3 (D3), representing half of the protein. Here, we identify a short structural motif in the disordered NS5A-D2 and report its NMR structure. We show that this structural motif, a minimal Pro(314)-Trp(316) turn, is essential for HCV RNA replication, and its disruption alters the subcellular distribution of NS5A. We demonstrate that this Pro-Trp turn is required for proper interaction with the host cyclophilin A and influences its peptidyl-prolyl cis/trans isomerase activity on residue Pro(314) of NS5A-D2. This work provides a molecular basis for further understanding of the function of the intrinsically disordered domain 2 of HCV NS5A protein. In addition, our work highlights how very small structural motifs present in intrinsically disordered proteins can exert a specific function.


Assuntos
Hepacivirus/enzimologia , RNA Viral/biossíntese , Proteínas não Estruturais Virais/química , Motivos de Aminoácidos , Ciclofilina A/química , Humanos , Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Prolina/química , RNA Viral/genética , Triptofano/química , Proteínas não Estruturais Virais/genética , Replicação Viral
10.
J Biomol NMR ; 65(2): 87-98, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27233794

RESUMO

We describe the expression of the hepatitis C virus nonstructural protein 4B (NS4B), which is an integral membrane protein, in a wheat germ cell-free system, the subsequent purification and characterization of NS4B and its insertion into proteoliposomes in amounts sufficient for multidimensional solid-state NMR spectroscopy. First spectra of the isotopically [(2)H,(13)C,(15)N]-labeled protein are shown to yield narrow (13)C resonance lines and a proper, predominantly α-helical fold. Clean residue-selective leucine, isoleucine and threonine-labeling is demonstrated. These results evidence the suitability of the wheat germ-produced integral membrane protein NS4B for solid-state NMR. Still, the proton linewidth under fast magic angle spinning is broader than expected for a perfect sample and possible causes are discussed.


Assuntos
Expressão Gênica , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/isolamento & purificação , Sequência de Aminoácidos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Dicroísmo Circular , Humanos , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Domínios Proteicos , Proteolipídeos/química
11.
PLoS Pathog ; 10(10): e1004501, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25392992

RESUMO

Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. In concert with other nonstructural proteins, it induces a specific membrane rearrangement, designated as membranous web, which serves as a scaffold for the HCV replicase. The N-terminal part of NS4B comprises a predicted and a structurally resolved amphipathic α-helix, designated as AH1 and AH2, respectively. Here, we report a detailed structure-function analysis of NS4B AH1. Circular dichroism and nuclear magnetic resonance structural analyses revealed that AH1 folds into an amphipathic α-helix extending from NS4B amino acid 4 to 32, with positively charged residues flanking the helix. These residues are conserved among hepaciviruses. Mutagenesis and selection of pseudorevertants revealed an important role of these residues in RNA replication by affecting the biogenesis of double-membrane vesicles making up the membranous web. Moreover, alanine substitution of conserved acidic residues on the hydrophilic side of the helix reduced infectivity without significantly affecting RNA replication, indicating that AH1 is also involved in virus production. Selective membrane permeabilization and immunofluorescence microscopy analyses of a functional replicon harboring an epitope tag between NS4B AH1 and AH2 revealed a dual membrane topology of the N-terminal part of NS4B during HCV RNA replication. Luminal translocation was unaffected by the mutations introduced into AH1, but was abrogated by mutations introduced into AH2. In conclusion, our study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication. In addition, we demonstrate that AH1 possesses a dual role in RNA replication and virus production, potentially governed by different topologies of the N-terminal part of NS4B.


Assuntos
Hepacivirus/metabolismo , Hepatite C/virologia , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Hepacivirus/química , Hepacivirus/genética , Hepacivirus/ultraestrutura , Humanos , Modelos Moleculares , Modelos Estruturais , Dados de Sequência Molecular , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Viral/genética , Replicon , Alinhamento de Sequência , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral
13.
J Virol ; 88(13): 7426-44, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24741107

RESUMO

UNLABELLED: GB virus B (GBV-B), which is hepatotropic in experimentally infected small New World primates, is a member of the Hepacivirus genus but phylogenetically relatively distant from hepatitis C virus (HCV). To gain insights into the role and specificity of hepaciviral nonstructural protein 2 (NS2), which is required for HCV polyprotein processing and particle morphogenesis, we investigated whether NS2 structural and functional features are conserved between HCV and GBV-B. We found that GBV-B NS2, like HCV NS2, has cysteine protease activity responsible for cleavage at the NS2/NS3 junction, and we experimentally confirmed the location of this junction within the viral polyprotein. A model for GBV-B NS2 membrane topology was experimentally established by determining the membrane association properties of NS2 segments fused to green fluorescent protein (GFP) and their nuclear magnetic resonance structures using synthetic peptides as well as by applying an N-glycosylation scanning approach. Similar glycosylation studies confirmed the HCV NS2 organization. Together, our data show that despite limited amino acid sequence similarity, GBV-B and HCV NS2 proteins share a membrane topology with 3 N-terminal transmembrane segments, which is also predicted to apply to other recently discovered hepaciviruses. Based on these data and using trans-complementation systems, we found that intragenotypic hybrid NS2 proteins with heterologous N-terminal membrane segments were able to efficiently trans-complement an assembly-deficient HCV mutant with a point mutation in the NS2 C-terminal domain, while GBV-B/HCV or intergenotypic NS2 chimeras were not. These studies indicate that virus- and genotype-specific intramolecular interactions between N- and C-terminal domains of NS2 are critically involved in HCV morphogenesis. IMPORTANCE: Nonstructural protein 2 (NS2) of hepatitis C virus (HCV) is a multifunctional protein critically involved in polyprotein processing and virion morphogenesis. To gain insights into NS2 mechanisms of action, we investigated whether NS2 structural and functional features are conserved between HCV and GB virus B (GBV-B), a phylogenetically relatively distant primate hepacivirus. We showed that GBV-B NS2, like HCV NS2, carries cysteine protease activity. We experimentally established a model for GBV-B NS2 membrane topology and demonstrated that despite limited sequence similarity, GBV-B and HCV NS2 share an organization with three N-terminal transmembrane segments. We found that the role of HCV NS2 in particle assembly is genotype specific and relies on critical interactions between its N- and C-terminal domains. This first comparative analysis of NS2 proteins from two hepaciviruses and our structural predictions of NS2 from other newly identified mammal hepaciviruses highlight conserved key features of the hepaciviral life cycle.


Assuntos
Membrana Celular/metabolismo , Infecções por Flaviviridae/metabolismo , Hepatite C/metabolismo , Hepatite Viral Humana/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Infecções por Flaviviridae/virologia , Imunofluorescência , Vírus GB B/fisiologia , Hepacivirus/fisiologia , Hepatite C/virologia , Hepatite Viral Humana/virologia , Humanos , Immunoblotting , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Proteínas não Estruturais Virais/química , Replicação Viral
14.
J Virol ; 88(18): 10584-97, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24990994

RESUMO

UNLABELLED: In spite of the high variability of its sequence, hepatitis C virus (HCV) envelope glycoprotein E2 contains several conserved regions. In this study, we explored the structural and functional features of the highly conserved E2 segment from amino acid (aa) 502 to 520, which had been proposed as a fusion peptide and shown to strongly overlap a potential conserved neutralizing epitope. For this purpose, we used reverse genetics to introduce point mutations within this region, and we characterized the phenotypes of these mutants in the light of the recently published structure of E2. The functional analyses showed that their phenotypes are in agreement with the positions of the corresponding residues in the E2 crystal structure. In contrast, our data ruled out the involvement of this region in membrane fusion, and they indicate that alternative conformations would be necessary to expose the potential neutralizing epitope present in this segment. Of particular interest, we identified three specific mutations (Y507L, V514A, and V515A) located within this neutralizing epitope which only mildly reduced infectivity and showed no assembly defect. These mutations modulated HCV dependence on the viral receptor SRB1, and/or they also modulated virion sensitivity to neutralizing antibodies. Importantly, their characterization also showed that amino acids Y507, V514, and V515 contribute to E2 interaction with HCV receptor CD81. In conclusion, our data show that the highly conserved E2 segment from aa 502 to 520 plays a key role in cell entry by influencing the association of the viral particle with coreceptors and neutralizing antibodies. IMPORTANCE: Hepatitis C virus (HCV) envelope proteins E1 and E2 exhibit sequence variability. However, some segments of the envelope proteins are highly conserved, suggesting that these sequences play a key role at some steps of the HCV life cycle. In this work, we characterized the function and structure of a highly conserved E2 region that is targeted by neutralizing antibodies and had been proposed as a fusion peptide. Our data ruled out the involvement of this region in membrane fusion but allowed for the identification of new residues modulating the interaction of the virus with entry factors and its sensitivity to neutralizing antibodies. Moreover, structural data suggest that alternative conformations could exist for E2, which would explain the presence of a partially masked neutralizing epitope in this segment in the currently available E2 structure. Overall, our findings highlight the importance of conserved regions in the sequences of HCV envelope proteins.


Assuntos
Hepacivirus/metabolismo , Hepatite C/metabolismo , Receptores Virais/metabolismo , Receptores Depuradores Classe B/metabolismo , Tetraspanina 28/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Sequência de Aminoácidos , Sequência Conservada , Hepacivirus/química , Hepacivirus/genética , Hepatite C/genética , Hepatite C/virologia , Humanos , Modelos Moleculares , Ligação Proteica , Receptores Virais/genética , Receptores Depuradores Classe B/genética , Alinhamento de Sequência , Tetraspanina 28/genética , Proteínas do Envelope Viral/genética
15.
Protein Expr Purif ; 113: 94-101, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26002116

RESUMO

Gal4/UAS system is a powerful tool for the analysis of numerous biological processes. Gal4 is a large yeast transcription factor that activates genes including UAS sequences in their promoter. Here, we have synthesized a minimal form of Gal4 DNA sequence coding for the binding and dimerization regions, but also part of the transcriptional activation domain. This truncated Gal4 protein was expressed as inclusion bodies in Escherichia coli. A structured and active form of this recombinant protein was purified and used to cover poly(lactic acid) (PLA) nanoparticles. In cellulo, these Gal4-vehicles were able to activate the expression of a Green Fluorescent Protein (GFP) gene under the control of UAS sequences, demonstrating that the decorated Gal4 variant can be delivery into cells where it still retains its transcription factor capacities. Thus, we have produced in E. coli and purified a short active form of Gal4 that retains its functions at the surface of PLA-nanoparticles in cellular assay. These decorated Gal4-nanoparticles will be useful to decipher their tissue distribution and their potential after ingestion or injection in UAS-GFP recombinant animal models.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Ácido Láctico/metabolismo , Nanopartículas/metabolismo , Polímeros/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Drosophila melanogaster/fisiologia , Corpos de Inclusão , Ácido Láctico/química , Nanopartículas/química , Poliésteres , Polímeros/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Propriedades de Superfície , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação
16.
Protein Expr Purif ; 116: 1-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26325423

RESUMO

Non-structural protein 2 (NS2) of the hepatitis C virus (HCV) is an integral membrane protein that contains a cysteine protease and that plays a central organizing role in assembly of infectious progeny virions. While the crystal structure of the protease domain has been solved, the NS2 full-length form remains biochemically and structurally uncharacterized because recombinant NS2 could not be prepared in sufficient quantities from cell-based systems. We show here that functional NS2 in the context of the NS2-NS3pro precursor protein, ensuring NS2-NS3 cleavage, can be efficiently expressed by using a wheat germ cell-free expression system. In this same system, we subsequently successfully produce and purify milligram amounts of a detergent-solubilized form of full-length NS2 exhibiting the expected secondary structure content. Furthermore, immuno-electron microscopy analyses of reconstituted proteoliposomes demonstrate NS2 association with model membranes.


Assuntos
Hepacivirus/química , Hepacivirus/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos , Sistema Livre de Células/metabolismo , Cromatografia em Gel , Clonagem Molecular , Detergentes/química , Expressão Gênica , Hepatite C/virologia , Lipossomos/química , Lipídeos de Membrana/química , Dados de Sequência Molecular , Plasmídeos/genética , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Solubilidade , Triticum/genética , Proteínas não Estruturais Virais/isolamento & purificação
17.
J Virol ; 86(15): 7818-28, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22593157

RESUMO

The maturation of the hepatitis C virus (HCV) core protein requires proteolytic processing by two host proteases: signal peptidase (SP) and the intramembrane-cleaving protease signal peptide peptidase (SPP). Previous work on HCV genotype 1a (GT1a) and GT2a has identified crucial residues required for efficient signal peptide processing by SPP, which in turn has an effect on the production of infectious virus particles. Here we demonstrate that the JFH1 GT2a core-E1 signal peptide can be adapted to the GT3a sequence without affecting the production of infectious HCV. Through mutagenesis studies, we identified crucial residues required for core-E1 signal peptide processing, including a GT3a sequence-specific histidine (His) at position 187. In addition, the stable knockdown of intracellular SPP levels in HuH-7 cells significantly affects HCV virus titers, further demonstrating the requirement for SPP for the maturation of core and the production of infectious HCV particles. Finally, our nuclear magnetic resonance (NMR) structural analysis of a synthetic HCV JFH1 GT2a core-E1 signal peptide provides an essential structural template for a further understanding of core processing as well as the first model for an SPP substrate within its membrane environment. Our findings give deeper insights into the mechanisms of intramembrane-cleaving proteases and the impact on viral infections.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Hepacivirus/metabolismo , Hepatite C/metabolismo , Sinais Direcionadores de Proteínas , Proteínas do Core Viral/metabolismo , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/genética , Células HEK293 , Hepacivirus/química , Hepacivirus/genética , Hepatite C/genética , Humanos , Mutagênese , Ressonância Magnética Nuclear Biomolecular , Proteínas do Core Viral/química , Proteínas do Core Viral/genética
18.
J Antimicrob Chemother ; 67(12): 2865-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22865380

RESUMO

OBJECTIVES: Human enterovirus 71 (EV-71), a member of the Enterovirus genus, constitutes a major public health issue in the Asia-Pacific region, where it is associated with several severe neurological complications. There is currently no effective vaccine or antiviral against EV-71. The aim of this study was to determine whether the six amino acid peptide LVLQTM, which was previously shown to inhibit human rhinovirus (HRV) 2A protease (2A(pro)) activity in vitro and HRV replication in vivo in mice, could be of more general use against enteroviruses and more particularly against EV-71. METHODS: To investigate whether the LVLQTM peptide was a pseudosubstrate of EV-71 2A(pro), a recombinant luciferase containing the LVLQTM sequence was designed so that recognition of this sequence by 2A(pro) led to luciferase activation. Direct interaction between EV-71 2A(pro) and the LVLQTM peptide was further confirmed by isothermal titration calorimetry. We then tested the effects of the peptide on EV-71 2A(pro) cleavage activity and EV-71 replication in HeLa cells. RESULTS: We showed that the LVLQTM peptide behaved as an effective substrate analogue of EV-71 2A(pro), which binds into the active site of the protease with a dissociation rate constant of 9.6 µM. Moreover, LVLQTM significantly inhibited eIF4G cleavage activity of 2A(pro) as well as EV-71 replication in HeLa cells. CONCLUSIONS: This study demonstrates that the LVLQTM peptide that has previously been shown to inhibit HRV replication is also an effective inhibitor of EV-71 2A(pro) and therefore of EV-71 replication, opening new doors in the development of new antivirals against EV-71.


Assuntos
Antivirais/farmacologia , Cisteína Endopeptidases/metabolismo , Enterovirus Humano A/enzimologia , Enterovirus Humano A/fisiologia , Inibidores de Proteases/farmacologia , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Enterovirus Humano A/efeitos dos fármacos , Células HeLa , Humanos , Oligopeptídeos/farmacologia , Ligação Proteica
19.
J Virol ; 85(4): 1777-92, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21147916

RESUMO

Little is known about the structure of the envelope glycoproteins of hepatitis C virus (HCV). To identify new regions essential for the function of these glycoproteins, we generated HCV pseudoparticles (HCVpp) containing HCV envelope glycoproteins, E1 and E2, from different genotypes in order to detect intergenotypic incompatibilities between these two proteins. Several genotype combinations were nonfunctional for HCV entry. Of interest, a combination of E1 from genotype 2a and E2 from genotype 1a was nonfunctional in the HCVpp system. We therefore used this nonfunctional complex and the recently described structural model of E2 to identify new functional regions in E2 by exchanging protein regions between these two genotypes. The functionality of these chimeric envelope proteins in the HCVpp system and/or the cell-cultured infectious virus (HCVcc) was analyzed. We showed that the intergenotypic variable region (IgVR), hypervariable region 2 (HVR2), and another segment in domain II play a role in E1E2 assembly. We also demonstrated intradomain interactions within domain I. Importantly, we also identified a segment (amino acids [aa] 705 to 715 [segment 705-715]) in the stem region of E2, which is essential for HCVcc entry. Circular dichroism and nuclear magnetic resonance structural analyses of the synthetic peptide E2-SC containing this segment revealed the presence of a central amphipathic helix, which likely folds upon membrane binding. Due to its location in the stem region, segment 705-715 is likely involved in the reorganization of the glycoprotein complexes taking place during the fusion process. In conclusion, our study highlights new functional and structural regions in HCV envelope glycoprotein E2.


Assuntos
Hepacivirus/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Internalização do Vírus , Sequência de Aminoácidos , Linhagem Celular Tumoral , Dicroísmo Circular , Genótipo , Células HEK293 , Hepacivirus/classificação , Hepacivirus/genética , Hepacivirus/fisiologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade , Proteínas do Envelope Viral/genética
20.
PLoS Pathog ; 6(12): e1001233, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21187906

RESUMO

Non-structural protein 2 (NS2) plays an important role in hepatitis C virus (HCV) assembly, but neither the exact contribution of this protein to the assembly process nor its complete structure are known. In this study we used a combination of genetic, biochemical and structural methods to decipher the role of NS2 in infectious virus particle formation. A large panel of NS2 mutations targeting the N-terminal membrane binding region was generated. They were selected based on a membrane topology model that we established by determining the NMR structures of N-terminal NS2 transmembrane segments. Mutants affected in virion assembly, but not RNA replication, were selected for pseudoreversion in cell culture. Rescue mutations restoring virus assembly to various degrees emerged in E2, p7, NS3 and NS2 itself arguing for an interaction between these proteins. To confirm this assumption we developed a fully functional JFH1 genome expressing an N-terminally tagged NS2 demonstrating efficient pull-down of NS2 with p7, E2 and NS3 and, to a lower extent, NS5A. Several of the mutations blocking virus assembly disrupted some of these interactions that were restored to various degrees by those pseudoreversions that also restored assembly. Immunofluorescence analyses revealed a time-dependent NS2 colocalization with E2 at sites close to lipid droplets (LDs) together with NS3 and NS5A. Importantly, NS2 of a mutant defective in assembly abrogates NS2 colocalization around LDs with E2 and NS3, which is restored by a pseudoreversion in p7, whereas NS5A is recruited to LDs in an NS2-independent manner. In conclusion, our results suggest that NS2 orchestrates HCV particle formation by participation in multiple protein-protein interactions required for their recruitment to assembly sites in close proximity of LDs.


Assuntos
Hepacivirus/química , Proteínas não Estruturais Virais/fisiologia , Montagem de Vírus , Hepacivirus/fisiologia , Lipídeos , Mutagênese , Mutação , Ligação Proteica , Transporte Proteico , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Vírion , Montagem de Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA