RESUMO
Recent advances in the isolation and stacking of monolayers of van der Waals materials have provided approaches for the preparation of quantum materials in the ultimate two-dimensional limit1,2. In van der Waals heterostructures formed by stacking two monolayer semiconductors, lattice mismatch or rotational misalignment introduces an in-plane moiré superlattice3. It is widely recognized that the moiré superlattice can modulate the electronic band structure of the material and lead to transport properties such as unconventional superconductivity4 and insulating behaviour driven by correlations5-7; however, the influence of the moiré superlattice on optical properties has not been investigated experimentally. Here we report the observation of multiple interlayer exciton resonances with either positive or negative circularly polarized emission in a molybdenum diselenide/tungsten diselenide (MoSe2/WSe2) heterobilayer with a small twist angle. We attribute these resonances to excitonic ground and excited states confined within the moiré potential. This interpretation is supported by recombination dynamics and by the dependence of these interlayer exciton resonances on twist angle and temperature. These results suggest the feasibility of engineering artificial excitonic crystals using van der Waals heterostructures for nanophotonics and quantum information applications.
RESUMO
A variety of quantum degrees of freedom, e.g., spins, valleys, and localized emitters, in atomically thin van der Waals materials have been proposed for quantum information applications, and they inevitably couple to phonons. Here, we directly measure the intrinsic optical phonon decoherence in monolayer and bulk MoS2 by observing the temporal evolution of the spectral interference of Stokes photons generated by pairs of laser pulses. We find that a prominent optical phonon mode E2g exhibits a room-temperature dephasing time of â¼7 ps in both the monolayer and bulk. This dephasing time extends to â¼20 ps in the bulk crystal at â¼15 K, which is longer than previously thought possible. First-principles calculations suggest that optical phonons decay via two types of three-phonon processes, in which a pair of acoustic phonons with opposite momentum are generated.
RESUMO
In van der Waals (vdW) heterostructures formed by stacking two monolayers of transition metal dichalcogenides, multiple exciton resonances with highly tunable properties are formed and subject to both vertical and lateral confinement. We investigate how a unique control knob, the twist angle between the two monolayers, can be used to control the exciton dynamics. We observe that the interlayer exciton lifetimes in MoSe_{2}/WSe_{2} twisted bilayers (TBLs) change by one order of magnitude when the twist angle is varied from 1° to 3.5°. Using a low-energy continuum model, we theoretically separate two leading mechanisms that influence interlayer exciton radiative lifetimes. The shift to indirect transitions in the momentum space with an increasing twist angle and the energy modulation from the moiré potential both have a significant impact on interlayer exciton lifetimes. We further predict distinct temperature dependence of interlayer exciton lifetimes in TBLs with different twist angles, which is partially validated by experiments. While many recent studies have highlighted how the twist angle in a vdW TBL can be used to engineer the ground states and quantum phases due to many-body interaction, our studies explore its role in controlling the dynamics of optically excited states, thus, expanding the conceptual applications of "twistronics".
RESUMO
Nonlinear frequency conversion plays a crucial role in advancing the functionality of next-generation optical systems. Portable metrology references and quantum networks will demand highly efficient second-order nonlinear devices, and the intense nonlinear interactions of nanophotonic waveguides can be leveraged to meet these requirements. Here we demonstrate second harmonic generation (SHG) in GaAs-on-insulator waveguides with unprecedented efficiency of 40 W-1 for a single-pass device. This result is achieved by minimizing the propagation loss and optimizing phase-matching. We investigate surface-state absorption and design the waveguide geometry for modal phase-matching with tolerance to fabrication variation. A 2.0 µm pump is converted to a 1.0 µm signal in a length of 2.9 mm with a wide signal bandwidth of 148 GHz. Tunable and efficient operation is demonstrated over a temperature range of 45 °C with a slope of 0.24 nm/°C. Wafer-bonding between GaAs and SiO2 is optimized to minimize waveguide loss, and the devices are fabricated on 76 mm wafers with high uniformity. We expect this device to enable fully integrated self-referenced frequency combs and high-rate entangled photon pair generation.
RESUMO
W centers are trigonal defects generated by self-ion implantation in silicon that exhibit photoluminescence at 1.218 µm. We have shown previously that they can be used in waveguide-integrated all-silicon light-emitting diodes (LEDs). Here we optimize the implant energy, fluence and anneal conditions to maximize the photoluminescence intensity for W centers implanted in silicon-on-insulator, a substrate suitable for waveguide-integrated devices. After optimization, we observe near two orders of magnitude improvement in photoluminescence intensity relative to the conditions with the stopping range of the implanted ions at the center of the silicon device layer. The previously demonstrated waveguide-integrated LED used implant conditions with the stopping range at the center of this layer. We further show that such light sources can be manufactured at the 300-mm scale by demonstrating photoluminescence of similar intensity from 300 mm silicon-on-insulator wafers. The luminescence uniformity across the entire wafer is within the measurement error.
RESUMO
As optical two-dimensional coherent spectroscopy (2DCS) is extended to a broader range of applications, it is critical to improve the detection sensitivity of optical 2DCS. We developed a fast phase-cycling scheme in a non-collinear optical 2DCS implementation by using liquid crystal phase retarders to modulate the phases of two excitation pulses. The background in the signal can be eliminated by combining either two or four interferograms measured with a proper phase configuration. The effectiveness of this method was validated in optical 2DCS measurements of an atomic vapor. This fast phase-cycling scheme will enable optical 2DCS in novel emerging applications that require enhanced detection sensitivity.
RESUMO
In atomically thin two-dimensional semiconductors such as transition metal dichalcogenides (TMDs), controlling the density and type of defects promises to be an effective approach for engineering light-matter interactions. We demonstrate that electron-beam irradiation is a simple tool for selectively introducing defect-bound exciton states associated with chalcogen vacancies in TMDs. Our first-principles calculations and time-resolved spectroscopy measurements of monolayer WSe_{2} reveal that these defect-bound excitons exhibit exceptional optical properties including a recombination lifetime approaching 200 ns and a valley lifetime longer than 1 µs. The ability to engineer the crystal lattice through electron irradiation provides a new approach for tailoring the optical response of TMDs for photonics, quantum optics, and valleytronics applications.
RESUMO
The optical properties of semiconducting transition metal dichalcogenides are dominated by both neutral excitons (electron-hole pairs) and charged excitons (trions) that are stable even at room temperature. While trions directly influence charge transport properties in optoelectronic devices, excitons may be relevant through exciton-trion coupling and conversion phenomena. In this work, we reveal the coherent and incoherent nature of exciton-trion coupling and the relevant time scales in monolayer MoSe2 using optical two-dimensional coherent spectroscopy. Coherent interaction between excitons and trions is definitively identified as quantum beating of cross peaks in the spectra that persists for a few hundred femtoseconds. For longer times up to 10 ps, surprisingly, the relative intensity of the cross peaks increases, which is attributed to incoherent energy transfer likely due to phonon-assisted up-conversion and down-conversion processes that are efficient even at cryogenic temperature.
RESUMO
Since the discovery of semiconducting monolayer transition metal dichalcogenides, a variety of experimental and theoretical studies have been carried out seeking to understand the intrinsic exciton population recombination and valley relaxation dynamics. Reports of the exciton decay time range from hundreds of femtoseconds to ten nanoseconds, while the valley depolarization time can exceed one nanosecond. At present, however, a consensus on the microscopic mechanisms governing exciton radiative and non-radiative recombination is lacking. The strong exciton oscillator strength resulting in up to ~ 20% absorption for a single monolayer points to ultrafast radiative recombination. However, the low quantum yield and large variance in the reported lifetimes suggest that non-radiative Auger-type processes obscure the intrinsic exciton radiative lifetime. In either case, the electron-hole exchange interaction plays an important role in the exciton spin and valley dynamics. In this article, we review the experiments and theory that have led to these conclusions and comment on future experiments that could complement our current understanding.
RESUMO
We study an asymmetric double InGaAs quantum well using optical two-dimensional coherent spectroscopy. The collection of zero-quantum, one-quantum, and two-quantum two-dimensional spectra provides a unique and comprehensive picture of the double well coherent optical response. Coherent and incoherent contributions to the coupling between the two quantum well excitons are clearly separated. An excellent agreement with density matrix calculations reveals that coherent interwell coupling originates from many-body interactions.
RESUMO
We have developed a technique to perform optical two-dimensional Fourier-transform (2DFT) spectroscopy in a reflection geometry. Various reflection 2DFT spectra are obtained for an atomic vapor. The technique is useful for the cases where optical 2DFT spectroscopy cannot be performed in the transmission geometry.
Assuntos
Algoritmos , Modelos Teóricos , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Simulação por Computador , Luz , Espalhamento de RadiaçãoRESUMO
In optical two-dimensional Fourier-transform (2DFT) spectroscopy, understanding how the spectral line shape is affected by pulse propagation in the sample is crucial for an accurate interpretation of spectra. We report an experimental study of pulse propagation effects in 2DFT spectroscopy performed in a dense atomic vapor. The spectral line shape can be dramatically distorted due to high optical density as well as the physical thickness of a sample. The spectral distortion can be partially corrected by using a reference pulse copropagating with the signal combined with appropriate data processing.
RESUMO
In recent years, quantum-dot-like single-photon emitters in atomically thin van der Waals materials have become a promising platform for future on-chip scalable quantum light sources with unique advantages over existing technologies, notably the potential for site-specific engineering. However, the required cryogenic temperatures for the functionality of these sources has been an inhibitor of their full potential. Existing methods to create emitters in 2D materials face fundamental challenges in extending the working temperature while maintaining the emitter's fabrication yield and purity. In this work, we demonstrate a method of creating site-controlled single-photon emitters in atomically thin WSe2 with high yield utilizing independent and simultaneous strain engineering via nanoscale stressors and defect engineering via electron-beam irradiation. Many of the emitters exhibit biexciton cascaded emission, single-photon purities above 95%, and working temperatures up to 150 K. This methodology, coupled with possible plasmonic or optical micro-cavity integration, furthers the realization of scalable, room-temperature, and high-quality 2D single- and entangled-photon sources.
RESUMO
We derive an analytical form for resonance lineshapes in two-dimensional (2D) Fourier transform spectroscopy. Our starting point is the solution of the optical Bloch equations for a two-level system in the 2D time domain. Application of the projection-slice theorem of 2D Fourier transforms reveals the form of diagonal and cross-diagonal slices in the 2D frequency data for arbitrary inhomogeneity. The results are applied in quantitative measurements of homogeneous and inhomogeneous broadening of multiple resonances in experimental data.
Assuntos
Análise de Fourier , Espectroscopia de Ressonância Magnética/métodos , Modelos TeóricosRESUMO
Multidimensional coherent spectroscopy is a powerful tool for understanding the ultrafast dynamics of complex quantum systems. To fully characterize the nonlinear optical response of a system, multiple pulse sequences must be recorded and quantitatively compared. We present a new single-scan method that enables rapid and parallel acquisition of all unique pulse sequences corresponding to first- and third-order degenerate wave-mixing processes. Signals are recorded with shot-noise limited detection, enabling acquisition times of ~2 minutes with ~100 zs phase stability and ~8 orders of dynamic range, in a collinear geometry, on a single-pixel detector. We demonstrate this method using quantum well excitons, and quantitative analysis reveals new insights into the bosonic nature of excitons. This scheme may enable rapid and scalable analysis of unique chemical signatures, metrology of optical susceptibilities, nonperturbative coherent control, and the implementation of quantum information protocols using multidimensional spectroscopy.
RESUMO
Multi-dimensional coherent spectroscopy (MDCS) has become an extremely versatile and sensitive technique for elucidating the structure, composition, and dynamics of condensed matter, atomic, and molecular systems. The appeal of MDCS lies in its ability to resolve both individual-emitter and ensemble-averaged dynamics of optically created excitations in disordered systems. When applied to semiconductors, MDCS enables unambiguous separation of homogeneous and inhomogeneous contributions to the optical linewidth, pinpoints the nature of coupling between resonances, and reveals signatures of many-body interactions. In this review, we discuss the implementation of MDCS to measure the nonlinear optical response of excitonic transitions in semiconductor nanostructures. Capabilities of the technique are illustrated with recent experimental studies that advance our understanding of optical decoherence and dissipation, energy transfer, and many-body phenomena in quantum dots and quantum wells, semiconductor microcavities, layered semiconductors, and photovoltaic materials.
RESUMO
In atomically thin transition metal dichalcogenides (TMDs), reduced dielectric screening of the Coulomb interaction leads to strongly correlated many-body states, including excitons and trions, that dominate the optical properties. Higher-order states, such as bound biexcitons, are possible but are difficult to identify unambiguously using linear optical spectroscopy methods. Here, we implement polarization-resolved two-dimensional coherent spectroscopy (2DCS) to unravel the complex optical response of monolayer MoSe2 and identify multiple higher-order correlated states. Decisive signatures of neutral and charged inter-valley biexcitons appear in cross-polarized two-dimensional spectra as distinct resonances with respective â¼20 and â¼5 meV binding energies-similar to recent calculations using variational and Monte Carlo methods. A theoretical model considering the valley-dependent optical selection rules reveals the quantum pathways that give rise to these states. Inter-valley biexcitons identified here, comprising of neutral and charged excitons from different valleys, offer new opportunities for developing ultrathin biexciton lasers and polarization-entangled photon sources.
RESUMO
The emerging field of valleytronics aims to exploit the valley pseudospin of electrons residing near Bloch band extrema as an information carrier. Recent experiments demonstrating optical generation and manipulation of exciton valley coherence (the superposition of electron-hole pairs at opposite valleys) in monolayer transition metal dichalcogenides (TMDs) provide a critical step towards control of this quantum degree of freedom. The charged exciton (trion) in TMDs is an intriguing alternative to the neutral exciton for control of valley pseudospin because of its long spontaneous recombination lifetime, its robust valley polarization, and its coupling to residual electronic spin. Trion valley coherence has however been unexplored due to experimental challenges in accessing it spectroscopically. In this work, we employ ultrafast two-dimensional coherent spectroscopy to resonantly generate and detect trion valley coherence in monolayer MoSe2 demonstrating that it persists for a few-hundred femtoseconds. We conclude that the underlying mechanisms limiting trion valley coherence are fundamentally different from those applicable to exciton valley coherence.
RESUMO
We demonstrate cryogenic, electrically injected, waveguide-coupled Si light-emitting diodes (LEDs) operating at 1.22 µm. The active region of the LED consists of W centers implanted in the intrinsic region of a p-i-n diode. The LEDs are integrated on waveguides with superconducting nanowire single-photon detectors (SNSPDs). We demonstrate the scalability of this platform with an LED coupled to eleven SNSPDs in a single integrated photonic device.
RESUMO
The amplitude and phase of a material's nonlinear optical response provide insight into the underlying electronic dynamics that determine its optical properties. Phase-sensitive nonlinear spectroscopy techniques are widely implemented to explore these dynamics through demodulation of the complex optical signal field into its quadrature components; however, complete reconstruction of the optical response requires measuring both the amplitude and phase of each quadrature, which is often lost in standard detection methods. Here, we implement a heterodyne-detection scheme to fully reconstruct the amplitude and phase response of spectral hole-burning from InAs/GaAs charged quantum dots. We observe an ultra-narrow absorption profile and a corresponding dispersive lineshape of the phase, which reflect the nanosecond optical coherence time of the charged exciton transition. Simultaneously, the measurements are sensitive to electron spin relaxation dynamics on a millisecond timescale, as this manifests as a magnetic-field dependent delay of the amplitude and phase modulation. Appreciable amplitude modulation depth and nonlinear phase shift up to ~0.09×π radians (16°) are demonstrated, providing new possibilities for quadrature modulation at faint photon levels with several independent control parameters, including photon number, modulation frequency, detuning, and externally applied fields.