RESUMO
Endosomal TLRs play an important role in systemic autoimmune diseases, such as systemic erythematosus lupus, in which DNA- and RNA-associated autoantigens activate autoreactive B cells through TLR9- and TLR7-dependent pathways. Nevertheless, TLR9-deficient autoimmune-prone mice develop more severe clinical disease, whereas TLR7-deficient and TLR7/9-double deficient autoimmune-prone mice develop less severe disease. To determine whether the regulatory activity of TLR9 is B cell intrinsic, we directly compared the functional properties of autoantigen-activated wild-type, TLR9-deficient, and TLR7-deficient B cells in an experimental system in which proliferation depends on BCR/TLR coengagement. In vitro, TLR9-deficient cells are less dependent on survival factors for a sustained proliferative response than are either wild-type or TLR7-deficient cells. The TLR9-deficient cells also preferentially differentiate toward the plasma cell lineage, as indicated by expression of CD138, sustained expression of IRF4, and other molecular markers of plasma cells. In vivo, autoantigen-activated TLR9-deficient cells give rise to greater numbers of autoantibody-producing cells. Our results identify distinct roles for TLR7 and TLR9 in the differentiation of autoreactive B cells that explain the capacity of TLR9 to limit, as well as TLR7 to promote, the clinical features of systemic erythematosus lupus.
Assuntos
Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Receptor 7 Toll-Like/imunologia , Receptor Toll-Like 9/imunologia , Animais , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Autoantígenos/imunologia , Autoimunidade/genética , Autoimunidade/imunologia , Linfócitos B/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Proliferação de Células/genética , Células Cultivadas , Citometria de Fluxo , Fatores Reguladores de Interferon/imunologia , Fatores Reguladores de Interferon/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Plasmócitos/imunologia , Plasmócitos/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator Reumatoide/imunologia , Sindecana-1/imunologia , Sindecana-1/metabolismo , Receptor 7 Toll-Like/deficiência , Receptor 7 Toll-Like/genética , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Transcriptoma/imunologiaRESUMO
OBJECTIVES: The goal of this study was to determine whether endosomal Toll-like receptors (TLRs) contribute to the clinical manifestation of systemic autoimmunity exhibited by mice that lack the lysosomal nuclease DNaseII. METHODS: DNaseII/IFNaR double deficient mice were intercrossed with Unc93b13d/3d mice to generate DNaseII-/-mice with non-functional endosomal TLRs. The resulting triple deficient mice were evaluated for arthritis, autoantibody production, splenomegaly, and extramedullary haematopoiesis. B cells from both strains were evaluated for their capacity to respond to endogenous DNA by using small oligonucleotide based TLR9D ligands and a novel class of bifunctional anti-DNA antibodies. RESULTS: Mice that fail to express DNaseII, IFNaR, and Unc93b1 still develop arthritis but do not make autoantibodies, develop splenomegaly, or exhibit extramedullary haematopoiesis. DNaseII-/- IFNaR-/- B cells can respond to synthetic ODNs, but not to endogenous dsDNA. CONCLUSIONS: RNA-reactive TLRs, presumably TLR7, are required for autoantibody production, splenomegaly, and extramedullary haematopoiesis in the DNaseII-/- model of systemic autoimmunity.
Assuntos
Artrite/metabolismo , Autoimunidade , DNA/metabolismo , Endossomos/metabolismo , RNA/metabolismo , Receptores Toll-Like/metabolismo , Animais , Artrite/genética , Artrite/imunologia , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , DNA/imunologia , Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/genética , Endossomos/imunologia , Genótipo , Hematopoese Extramedular , Ligantes , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Camundongos Knockout , Fenótipo , RNA/imunologia , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Transdução de Sinais , Esplenomegalia , Receptor 7 Toll-Like/imunologia , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/imunologiaRESUMO
Central B cell tolerance is believed to be regulated by B cell receptor signaling induced by the recognition of self-antigens in immature B cells. Using humanized mice with defective MyD88, TLR7, or TLR9 expression, we demonstrate that TLR9/MYD88 are required for central B cell tolerance and the removal of developing autoreactive clones. We also show that CXCL4, a chemokine involved in systemic sclerosis (SSc), abrogates TLR9 function in B cells by sequestering TLR9 ligands away from the endosomal compartments where this receptor resides. The in vivo production of CXCL4 thereby impedes both TLR9 responses in B cells and the establishment of central B cell tolerance. We conclude that TLR9 plays an essential early tolerogenic function required for the establishment of central B cell tolerance and that correcting defective TLR9 function in B cells from SSc patients may represent a novel therapeutic strategy to restore B cell tolerance.
Assuntos
Fator Plaquetário 4 , Escleroderma Sistêmico , Receptor Toll-Like 9 , Animais , Humanos , Camundongos , Linfócitos B , Ligantes , Fator 88 de Diferenciação Mieloide/metabolismo , Fator Plaquetário 4/metabolismo , Escleroderma Sistêmico/metabolismo , Receptor 7 Toll-Like , Receptor Toll-Like 9/metabolismoRESUMO
At the genomic level, Yersinia pestis and Yersinia pseudotuberculosis are nearly identical but cause very different diseases. Y. pestis is the etiologic agent of plague; whereas Y. pseudotuberculosis causes a gastrointestinal infection primarily after the consumption of contaminated food. In many gram-negative pathogenic bacteria, PhoP is part of a two-component global regulatory system in which PhoQ serves as the sensor kinase, and PhoP is the response regulator. PhoP is known to activate a number of genes in many bacteria related to virulence. To determine the role of the PhoPQ proteins in Yersinia infections, primarily using aerosol challenge models, the phoP gene was deleted from the chromosome of the CO92 strain of Y. pestis and the IP32953 strain of Y. pseudotuberculosis, leading to a polar mutation of the phoPQ operon. We demonstrated that loss of phoPQ from both strains leads to a defect in intracellular growth and/or survival within macrophages. These in vitro data would suggest that the phoPQ mutants would be attenuated in vivo. However, the LD(50) for the Y. pestis mutant did not differ from the calculated LD(50) for the wild-type CO92 strain for either the bubonic or pneumonic murine models of infection. In contrast, mice challenged by aerosol with the Y. pseudotuberculosis mutant had a LD(50) value 40× higher than the wild-type strain. These results demonstrate that phoPQ are necessary for full virulence by aerosol infection with the IP32953 strain of Y. pseudotuberculosis. However, the PhoPQ proteins do not play a significant role in infection with a fully virulent strain of Y. pestis.
Assuntos
Proteínas de Bactérias/genética , Óperon , Yersinia pestis/genética , Yersinia pestis/patogenicidade , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/patogenicidade , Animais , Proteínas de Bactérias/metabolismo , Gastroenteropatias/microbiologia , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Variação Genética , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Peste/microbiologia , Virulência/genética , Infecções por Yersinia pseudotuberculosis/microbiologiaRESUMO
The etiologic agent of plague, Yersinia pestis, is a globally distributed pathogen which poses both a natural and adversarial threat. Due largely to the rapid course and high mortality of pneumonic plague, vaccines are greatly needed. Two-component protein vaccines have been unreliable and potentially vulnerable to vaccine resistance. We evaluated the safety and efficacy of eight live Y. pestis strains derived from virulent strains CO92 or KIM6+ and mutated in one or more virulence-associated gene(s) or cured of plasmid pPst. Stringent, single-dose vaccination allowed down-selection of the two safest and most protective vaccine candidates, CO92 mutants pgm- pPst- and ΔyscN. Both completely protected BALB/c mice against subcutaneous and aerosol challenge with Y. pestis. Strain CD-1 outbred mice were more resistant to bubonic (but not pneumonic) plague than BALB/c mice, but the vaccines elicited partial protection of CD-1 mice against aerosol challenge, while providing full protection against subcutaneous challenge. A ΔyscN mutant of the nonencapsulated C12 strain was expected to display antigens previously concealed by the capsule. C12 ΔyscN elicited negligible titers to F1 but comparable antibody levels to whole killed bacteria, as did CO92 ΔyscN. Although one dose of C12 ΔyscN was not protective, vaccination with two doses of either CO92 ΔyscN, or a combination of the ΔyscN mutants of C12 and CO92, protected optimally against lethal bubonic or pneumonic plague. Protection against encapsulated Y. pestis required inclusion of F1 in the vaccine and was associated with high anti-F1 titers.
RESUMO
High titers of autoantibodies reactive with DNA/RNA molecular complexes are characteristic of autoimmune disorders such as systemic lupus erythematosus (SLE). In vitro and in vivo studies have implicated the endosomal Toll-like receptor 9 (TLR9) and Toll-like receptor 7 (TLR7) in the activation of the corresponding autoantibody producing B cells. Importantly, TLR9/TLR7-deficiency results in the inability of autoreactive B cells to proliferate in response to DNA/RNA-associated autoantigens in vitro, and in marked changes in the autoantibody repertoire of autoimmune-prone mice. Uptake of DNA/RNA-associated autoantigen immune complexes (ICs) also leads to activation of dendritic cells (DCs) through TLR9 and TLR7. The initial studies from our lab involved ICs formed by a mixture of autoantibodies and cell debris released from dying cells in culture. To better understand the nature of the mammalian ligands that can effectively activate TLR7 and TLR9, we have developed a methodology for preparing ICs containing defined DNA fragments that recapitulate the immunostimulatory activity of the previous "black box" ICs. As the endosomal TLR7 and TLR9 function optimally from intracellular acidic compartments, we developed a facile methodology to monitor the trafficking of defined DNA ICs by flow cytometry and confocal microscopy. These reagents reveal an important role for nucleic acid sequence, even when the ligand is mammalian DNA and will help illuminate the role of IC trafficking in the response.
Assuntos
Complexo Antígeno-Anticorpo/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Ativação Linfocitária/imunologia , Receptores Toll-Like/metabolismo , Animais , Complexo Antígeno-Anticorpo/metabolismo , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Concentração de Íons de Hidrogênio , Camundongos , Microscopia Confocal , Transporte ProteicoRESUMO
Many bacterial species use secreted quorum-sensing autoinducer molecules to regulate cell density- and growth phase-dependent gene expression, including virulence factor production, as sufficient environmental autoinducer concentrations are achieved. Bacillus anthracis, the causative agent of anthrax, contains a functional autoinducer (AI-2) system, which appears to regulate virulence gene expression. To determine if the AI-2 system is necessary for disease, we constructed a LuxS AI-2 synthase-deficient mutant in the virulent Ames strain of B. anthracis. We found that growth of the LuxS-deficient mutant was inhibited and sporulation was delayed when compared with the parental strain. However, spores of the Ames luxS mutant remained fully virulent in both mice and guinea pigs.
Assuntos
Antraz/genética , Bacillus anthracis/patogenicidade , Proteínas de Bactérias/metabolismo , Liases de Carbono-Enxofre/metabolismo , Homosserina/análogos & derivados , Lactonas/metabolismo , Percepção de Quorum , Animais , Antraz/imunologia , Antraz/patologia , Bacillus anthracis/genética , Bacillus anthracis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Liases de Carbono-Enxofre/genética , Regulação Bacteriana da Expressão Gênica , Cobaias , Homosserina/genética , Homosserina/metabolismo , Camundongos , Percepção de Quorum/genética , Esporos Bacterianos/patogenicidade , Virulência/genética , Fatores de Virulência/genéticaRESUMO
Bacillus anthracis is the causative agent of anthrax, and the spore form of the bacterium represents the infectious particle introduced into a host. The spore is surrounded by an exosporium, a loose-fitting membrane composed of proteins and carbohydrates from which hair-like projections extend. These projections are composed mainly of BclA (Bacillus-collagen-like protein of B. anthracis). To date, exact roles of the exosporium structure and BclA protein remain undetermined. We examined differences in spore binding of wild-type Ames and a bclA mutant of B. anthracis to bronchial epithelial cells as well as to the following other epithelial cells: A549, CHO, and Caco-2 cells; the IMR-90 fibroblast line; and human umbilical vein vascular endothelium cells. The binding of wild-type Ames spores to bronchial epithelial cells appeared to be a dose-dependent, receptor-ligand-mediated event. There were similar findings for the bclA mutant, with an additional nonspecific binding component likely leading to significantly more adherence to all nonprofessional phagocytic cell types. In contrast, we detected no difference in adherence and uptake of spores by macrophages for either the wild-type Ames or the bclA mutant strain. These results suggest that one potential role of the BclA fibers may be to inhibit nonspecific interactions between B. anthracis spores with nonprofessional phagocytic cells and thus direct the spores towards uptake by macrophages during initiation of infection in mammals.