Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38202748

RESUMO

The antibacterial activity and mechanism of Pinus densiflora extracts against Escherichia coli and Staphylococcus aureus were investigated. The growth inhibition tests of paper diffusion and optical density exhibited that the extracts have potent antibacterial potentials against foodborne pathogens. The measurement of membrane fluidity by fluorescence polarization has indicated that one of the antibacterial mechanisms involves the disruption of membrane integrity resulting in an increase in the membrane fluidity in both of E. coli and S. aureus. The alteration of fatty acid composition was accompanied by the disturbance of membranes thus shifting the proportion of saturated verses unsaturated fatty acids or trans fatty acids from 1.27:1 to 1.35:1 in E. coli and 1.47:1 to 2.31:1 in S. aureus, most likely to compensate for the increased membrane fluidity by means of a higher proportion of saturated fatty acids which is known to render rigidity in membranes. Realtime q-PCR (polymerase chain reaction) analysis of fatty acid synthetic genes and bacterial stress genes revealed that there was minimal influence of P. densiflora extracts on fatty acid genes except for fab I and the stress rpos in E. coli, and relatively greater impact on fatty acid genes and the stress sigB in S. aureus.


Assuntos
Pinus , Infecções Estafilocócicas , Lipídeos de Membrana , Escherichia coli , Staphylococcus aureus , Vapor , Destilação , Fluidez de Membrana , Antibacterianos/farmacologia , Ácidos Graxos , Extratos Vegetais/farmacologia , República da Coreia
2.
Nat Mater ; 16(5): 543-550, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28191898

RESUMO

Phosphor-converted white light-emitting diodes (pc-WLEDs) are efficient light sources used in lighting, high-tech displays, and electronic devices. One of the most significant challenges of pc-WLEDs is the thermal quenching, in which the phosphor suffers from emission loss with increasing temperature during high-power LED operation. Here, we report a blue-emitting Na3-2xSc2(PO4)3:xEu2+ phosphor (λem = 453 nm) that does not exhibit thermal quenching even up to 200 °C. This phenomenon of zero thermal quenching originates from the ability of the phosphor to compensate the emission losses and therefore sustain the luminescence with increasing temperature. The findings are explained by polymorphic modification and possible energy transfer from electron-hole pairs at the thermally activated defect levels to the Eu2+ 5d-band with increasing temperature. Our results could initiate the exploration of phosphors with zero thermal quenching for high-power LED applications.

3.
J Med Chem ; 63(15): 8388-8407, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32696644

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic human pathogen that forms biofilms and produces virulence factors via quorum sensing (QS). Blocking the QS system in P. aeruginosa is an excellent strategy to reduce biofilm formation and the production of virulence factors. RhlR plays an essential role in the QS system of P. aeruginosa. We synthesized 55 analogues based on the chemical structure of 4-gingerol and evaluated their RhlR inhibitory activities using the cell-based reporter strain assay. Comprehensive structure-activity relationship studies identified the alkynyl ketone 30 as the most potent RhlR antagonist. This compound displayed selective RhlR antagonism over LasR and PqsR, strong inhibition of biofilm formation, and reduced production of virulence factors in P. aeruginosa. Furthermore, the survival rate of Tenebrio molitor larvae treated with 30 in vivo greatly improved. Therefore, compound 30, a pure RhlR antagonist, can be utilized for developing QS-modulating molecules in the control of P. aeruginosa infections.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Catecóis/química , Catecóis/farmacologia , Descoberta de Drogas , Álcoois Graxos/química , Álcoois Graxos/farmacologia , Humanos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/efeitos dos fármacos
4.
Materials (Basel) ; 8(12): 8183-8194, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-28793706

RESUMO

Ceramics in the system (Bi0.5K0.5)TiO3-BiFeO3 have good electromechanical properties and temperature stability. However, the high conductivity inherent in BiFeO3-based ceramics complicates measurement of the ferroelectric properties. In the present work, doping with niobium (Nb) is carried out to reduce the conductivity of (Bi0.5K0.5)TiO3-BiFeO3. Powders of composition 0.4(K0.5Bi0.5)Ti1-xNbxO3-0.6BiFe1-xNbxO3 (x = 0, 0.01 and 0.03) are prepared by the mixed oxide method and sintered at 1050 °C for 1 h. The effect of Nb doping on the structure is examined by X-ray diffraction. The microstructure is examined by scanning electron microscopy. The variation in relative permittivity with temperature is measured using an impedance analyzer. Ferroelectric properties are measured at room temperature using a Sawyer Tower circuit. Piezoelectric properties are measured using a d33 meter and a contact type displacement sensor. All the samples have high density, a rhombohedral unit cell and equiaxed, micron-sized grains. All the samples show relaxor-like behavior. Nb doping causes a reduction in conductivity by one to two orders of magnitude at 200 °C. The samples have narrow P-E loops reminiscent of a linear dielectric. The samples all possess bipolar butterfly S-E loops characteristic of a classic ferroelectric material. Nb doping causes a decrease in d33 and Smax/Emax.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA