Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Plant Cell ; 31(9): 2169-2186, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31266901

RESUMO

In Arabidopsis (Arabidopsis thaliana) leaves, starch is synthesized during the day and degraded at night to fuel growth and metabolism. Starch is degraded primarily by ß-amylases, liberating maltose, but this activity is preceded by glucan phosphorylation and is accompanied by dephosphorylation. A glucan phosphatase family member, LIKE SEX4 1 (LSF1), binds starch and is required for normal starch degradation, but its exact role is unclear. Here, we show that LSF1 does not dephosphorylate glucans. The recombinant dual specificity phosphatase (DSP) domain of LSF1 had no detectable phosphatase activity. Furthermore, a variant of LSF1 mutated in the catalytic cysteine of the DSP domain complemented the starch-excess phenotype of the lsf1 mutant. By contrast, a variant of LSF1 with mutations in the carbohydrate binding module did not complement lsf1 Thus, glucan binding, but not phosphatase activity, is required for the function of LSF1 in starch degradation. LSF1 interacts with the ß-amylases BAM1 and BAM3, and the BAM1-LSF1 complex shows amylolytic but not glucan phosphatase activity. Nighttime maltose levels are reduced in lsf1, and genetic analysis indicated that the starch-excess phenotype of lsf1 is dependent on bam1 and bam3 We propose that LSF1 binds ß-amylases at the starch granule surface, thereby promoting starch degradation.


Assuntos
Arabidopsis/metabolismo , Metabolismo dos Carboidratos/fisiologia , Fosfatases de Especificidade Dupla/metabolismo , Amido/metabolismo , beta-Amilase/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo dos Carboidratos/genética , Proteínas de Transporte , Clonagem Molecular , Fosfatases de Especificidade Dupla/genética , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Fosforilação , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/metabolismo , beta-Amilase/genética
2.
Plant Physiol ; 173(2): 956-969, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27923987

RESUMO

Reversible protein phosphorylation catalyzed by protein kinases and phosphatases represents the most prolific and well-characterized posttranslational modification known. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) Shewanella-like protein phosphatase 2 (AtSLP2) is a bona fide Ser/Thr protein phosphatase that is targeted to the mitochondrial intermembrane space (IMS) where it interacts with the mitochondrial oxidoreductase import and assembly protein 40 (AtMIA40), forming a protein complex. Interaction with AtMIA40 is necessary for the phosphatase activity of AtSLP2 and is dependent on the formation of disulfide bridges on AtSLP2. Furthermore, by utilizing atslp2 null mutant, AtSLP2 complemented and AtSLP2 overexpressing plants, we identify a function for the AtSLP2-AtMIA40 complex in negatively regulating gibberellic acid-related processes during seed germination. Results presented here characterize a mitochondrial IMS-localized protein phosphatase identified in photosynthetic eukaryotes as well as a protein phosphatase target of the highly conserved eukaryotic MIA40 IMS oxidoreductase.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/enzimologia , Germinação , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Sementes/embriologia , Sementes/metabolismo , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/química , Vias Biossintéticas/efeitos dos fármacos , Dissulfetos/metabolismo , Ativação Enzimática/efeitos dos fármacos , Germinação/efeitos dos fármacos , Giberelinas/biossíntese , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/química , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Sementes/efeitos dos fármacos , Alinhamento de Sequência , Especificidade por Substrato/efeitos dos fármacos , Triazóis/farmacologia
3.
Biochem Biophys Res Commun ; 458(4): 739-44, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25666948

RESUMO

Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase of eukaryotes. PP2A containing the B55 subunit is a key regulator of mitosis and must be inhibited by phosphorylated α-endosulfine (ENSA) or cyclic AMP-regulated 19 kDa phosphoprotein (ARPP-19) to allow passage through mitosis. Exit from mitosis then requires dephosphorylation of ENSA/ARPP-19 to relieve inhibition of PP2A/B55. ENSA/ARPP-19 has been characterized in several vertebrates and budding yeast, but little is known about its presence in plants and the majority of other eukaryotes. Here we show that three isoforms of ENSA/ARPP-19 are present in the Arabidopsis thaliana genome with distinct expression profiles across various plant tissues. The ENSA/ARPP-19 proteins, and in particular their key inhibitory sequence FDSGDY (FDSADW in plants), is remarkably conserved across plants and most eukaryotes suggesting an ancient origin and conserved function to control PP2A activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatase 2/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/química , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Biologia Computacional , Eucariotos , Regulação da Expressão Gênica de Plantas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Mitose , Dados de Sequência Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência
4.
Biochem Biophys Res Commun ; 453(3): 432-7, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25281536

RESUMO

Protein phosphatase 1 (PP1), a serine/threonine protein phosphatase, controls diverse key cellular events. PP1 catalytic subunits form complexes with a variety of interacting proteins that control its ability to dephosphorylate substrates. Here we show that the human mitotic kinesin-8, KIF18A, directly interacts with PP1γ through a conserved RVxF motif. Our phylogenetic analyses of the kinesins further uncovered the broad conservation of this interaction potential within the otherwise highly diverse motor-protein superfamily. This suggests an ancestral origin of PP1 recruitment to KIF18A and a strategic role in human mitotic cells.


Assuntos
Cinesinas/metabolismo , Mitose , Proteína Fosfatase 1/metabolismo , Sítios de Ligação , Células HeLa , Humanos , Filogenia
5.
Plant J ; 71(2): 263-72, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22404109

RESUMO

It is now emerging that many proteins are regulated by a variety of covalent modifications. Using microcystin-affinity chromatography we have purified multiple protein phosphatases and their associated proteins from Arabidopsis thaliana. One major protein purified was the histone deacetylase HDA14. We demonstrate that HDA14 can deacetylate α-tubulin, associates with α/ß-tubulin and is retained on GTP/taxol-stabilized microtubules, at least in part, by direct association with the PP2A-A2 subunit. Like HDA14, the putative histone acetyltransferase ELP3 was purified on microcystin-Sepharose and is also enriched at microtubules, potentially functioning in opposition to HDA14 as the α-tubulin acetylating enzyme. Consistent with the likelihood of it having many substrates throughout the cell, we demonstrate that HDA14, ELP3 and the PP2A A-subunits A1, A2 and A3 all reside in both the nucleus and cytosol of the cell. The association of a histone deacetylase with PP2A suggests a direct link between protein phosphorylation and acetylation.


Assuntos
Arabidopsis/enzimologia , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Microtúbulos/enzimologia , Proteína Fosfatase 2/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/enzimologia , Citosol/enzimologia , Histona Acetiltransferases/genética , Histona Acetiltransferases/isolamento & purificação , Histona Desacetilases/genética , Histona Desacetilases/isolamento & purificação , Microcistinas/química , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/isolamento & purificação , Proteínas Recombinantes de Fusão
6.
Biochem J ; 435(1): 73-83, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21222654

RESUMO

PP1 (protein phosphatase 1) is among the most conserved enzymes known, with one or more isoforms present in all sequenced eukaryotic genomes. PP1 dephosphorylates specific serine/threonine phosphoproteins as defined by associated regulatory or targeting subunits. In the present study we performed a PP1-binding screen to find putative PP1 interactors in Arabidopsis thaliana and uncovered a homologue of the ancient PP1 interactor, I-2 (inhibitor-2). Bioinformatic analysis revealed remarkable conservation of three regions of plant I-2 that play key roles in binding to PP1 and regulating its function. The sequence-related properties of plant I-2 were compared across eukaryotes, indicating a lack of I-2 in some species and the emergence points from key motifs during the evolution of this ancient regulator. Biochemical characterization of AtI-2 (Arabidopsis I-2) revealed its ability to inhibit all plant PP1 isoforms and inhibitory dependence requiring the primary interaction motif known as RVXF. Arabidopsis I-2 was shown to be a phosphoprotein in vivo that was enriched in the nucleus. TAP (tandem affinity purification)-tag experiments with plant I-2 showed in vivo association with several Arabidopsis PP1 isoforms and identified other potential I-2 binding proteins.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Proteína Fosfatase 1/química , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Biologia Computacional/métodos , Bases de Dados de Proteínas , Dados de Sequência Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/isolamento & purificação , Fosfoproteínas/metabolismo , Filogenia , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Estruturas Vegetais/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/isolamento & purificação , Proteína Fosfatase 1/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
7.
BMC Evol Biol ; 10: 196, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20576132

RESUMO

BACKGROUND: Phosphorylated phosphatidylinositol (PtdIns) lipids, produced and modified by PtdIns kinases and phosphatases, are critical to the regulation of diverse cellular functions. The myotubularin PtdIns-phosphate phosphatases have been well characterized in yeast and especially animals, where multiple isoforms, both catalytically active and inactive, occur. Myotubularin mutations bring about disruption of cellular membrane trafficking, and in humans, disease. Previous studies have suggested that myotubularins are widely distributed amongst eukaryotes, but key evolutionary questions concerning the origin of different myotubularin isoforms remain unanswered, and little is known about the function of these proteins in most organisms. RESULTS: We have identified 80 myotubularin homologues amidst the completely sequenced genomes of 30 organisms spanning four eukaryotic supergroups. We have mapped domain architecture, and inferred evolutionary histories. We have documented an expansion in the Amoebozoa of a family of inactive myotubularins with a novel domain architecture, which we dub "IMLRK" (inactive myotubularin/LRR/ROCO/kinase). There is an especially large myotubularin gene family in the pathogen Entamoeba histolytica, the majority of them IMLRK proteins. We have analyzed published patterns of gene expression in this organism which indicate that myotubularins may be important to critical life cycle stage transitions and host infection. CONCLUSIONS: This study presents an overall framework of eukaryotic myotubularin gene evolution. Inactive myotubularin homologues with distinct domain architectures appear to have arisen on three separate occasions in different eukaryotic lineages. The large and distinctive set of myotubularin genes found in an important pathogen species suggest that in this organism myotubularins might present important new targets for basic research and perhaps novel therapeutic strategies.


Assuntos
Amebozoários/genética , Evolução Molecular , Filogenia , Proteínas Tirosina Fosfatases não Receptoras/genética , Sequência de Aminoácidos , Animais , Expressão Gênica , Humanos , Dados de Sequência Molecular , Família Multigênica , Fosfatos de Fosfatidilinositol/metabolismo , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Análise de Sequência de DNA
8.
Biochem J ; 417(2): 401-9, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19099538

RESUMO

Protein phosphorylation appears to be a universal mechanism of protein regulation. Genomics has provided the means to compile inventories of protein phosphatases across a wide selection of organisms and this has supplied insights into the evolution of this group of enzymes. Protein phosphatases evolved independently several times yielding the groups we observe today. Starting from a core catalytic domain, phosphatases evolved by a series of gene duplication events and by adopting the use of regulatory subunits and/or fusion with novel functional modules or domains. Recent analyses also suggest that the serine/threonine specific enzymes are more ancient than the PTPs (protein tyrosine phosphatases). It is likely that the latter played a key role at the onset of metazoan evolution in conjunction with the tremendous expansion of tyrosine kinases and PTPs at this point. In the present review, we discuss the evolution of the PTPs, the serine/threonine specific PPP (phosphoprotein phosphatase) and PPM (metallo-dependent protein phosphatase) families and the more recently discovered phosphatases that utilize an aspartate-based catalytic mechanism. We will also highlight examples of convergent evolution and several phosphatases which are unique to plants.


Assuntos
Evolução Molecular , Fosfoproteínas Fosfatases/genética , Plantas/genética , Animais , Ativação Enzimática , Humanos , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/classificação , Fosfoproteínas Fosfatases/metabolismo , Plantas/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Especificidade por Substrato
9.
Biochim Biophys Acta ; 1774(10): 1339-50, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17890166

RESUMO

The targeting of protein kinases and phosphatases is fundamental to their roles as cellular regulators. The type one serine/threonine protein phosphatase (PP1) is enriched in the nucleus, yet few nuclear PP1 targeting subunits have been described and characterized. Here we show that the human protein, ZAP3 (also known as ZAP), is localized to the nucleus, that it is expressed in all mammalian tissues examined, and docks to PP1 through an RVRW motif located in its highly conserved carboxy-terminus. Proteomic analysis of a ZAP3 complex revealed that in addition to binding PP1, ZAP3 complexes with CIA (or nuclear receptor co-activator 5) and the RNA binding proteins hnRNP-G, SAM68 and NF110/45, but loses affinity for SAM68 and hnRNP-G upon digestion of endogenous nucleic acid. Bioinformatics has revealed that the conserved carboxy-terminus is orthologous to T4- and mammalian polynucleotide kinases with residues necessary for kinase activity maintained throughout evolution. Furthermore, the substrate binding pocket of uridine-cytidine kinase (or uridine kinase) has localized sequence similarity with ZAP3, suggesting uridine or cytidine as possible ZAP3 substrates. Most polynucleotide kinases have a phosphohydrolase domain in conjunction with their kinase domain. In ZAP3, although this domain is present, it now appears degenerate and functions to bind PP1 through an RVRW docking site located within the domain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Proteína do Fator Nuclear 45/metabolismo , Proteínas do Fator Nuclear 90/metabolismo , Proteínas Nucleares/metabolismo , Nucleoproteínas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas de Ligação a RNA/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Sequência Conservada/genética , Células HeLa , Humanos , Chaperonas Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Nucleoproteínas/genética , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ligação Proteica/genética , Proteína Fosfatase 1/química , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Coelhos , Ratos , Proteínas Repressoras
10.
BMC Plant Biol ; 8: 120, 2008 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19038037

RESUMO

BACKGROUND: Starch accumulation and degradation in chloroplasts is accomplished by a suite of over 30 enzymes. Recent work has emphasized the importance of multi-protein complexes amongst the metabolic enzymes, and the action of associated non-enzymatic regulatory proteins. Arabidopsis At5g39790 encodes a protein of unknown function whose sequence was previously demonstrated to contain a putative carbohydrate-binding domain. RESULTS: We here show that At5g39790 is chloroplast-localized, and binds starch, with a preference for amylose. The protein persists in starch binding under conditions of pH, redox and Mg(+2) concentrations characteristic of both the day and night chloroplast cycles. Bioinformatic analysis demonstrates a diurnal pattern of gene expression, with an accumulation of transcript during the light cycle and decline during the dark cycle. A corresponding diurnal pattern of change in protein levels in leaves is also observed. Sequence analysis shows that At5g39790 has a strongly-predicted coiled-coil domain. Similar analysis of the set of starch metabolic enzymes shows that several have strong to moderate coiled-coil potential. Gene expression analysis shows strongly correlated patterns of co-expression between At5g39790 and several starch metabolic enzymes. CONCLUSION: We propose that At5g39790 is a regulatory scaffold protein, persistently binding the starch granule, where it is positioned to interact by its coiled-coil domain with several potential starch metabolic enzyme binding-partners.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/metabolismo , Amido/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Alinhamento de Sequência , Especificidade por Substrato , Fatores de Tempo
11.
BMC Biochem ; 9: 28, 2008 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19000314

RESUMO

BACKGROUND: Protein phosphatase one (PP1) is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif. RESULTS: We demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIalpha, several nuclear helicases, NUP153 and the TRRAP complex. CONCLUSION: This modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes.


Assuntos
Cromatografia de Afinidade/métodos , Proteína Fosfatase 1/isolamento & purificação , Motivos de Aminoácidos , Animais , Sítios de Ligação , Glicogênio/isolamento & purificação , Células HeLa , Humanos , Microcistinas/química , Microcistinas/metabolismo , Músculo Esquelético/metabolismo , Proteína Fosfatase 1/química , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Coelhos , Sefarose/química
12.
Methods Mol Biol ; 365: 39-45, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17200552

RESUMO

Microcystin-based affinity matrices have been utilized to demonstrate the association of signaling proteins with protein phosphatases and for the purification of low-abundance microcystin-sensitive protein phosphatases. Here, we describe the procedure for the synthesis and use of microcystin-Sepharose and microcystin-biotin-Sepharose.


Assuntos
Biotina/química , Cromatografia de Afinidade/métodos , Microcistinas/química , Fosfoproteínas Fosfatases/isolamento & purificação , Sefarose/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Fosfoproteínas Fosfatases/química , Reprodutibilidade dos Testes
13.
Methods Mol Biol ; 365: 47-59, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17200553

RESUMO

Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase that plays a central role in controlling the cellular response to DNA double-strand breaks caused by ionizing radiation. Ionizing radiation induces the autophosphorylation of ATM on serine 1981; however, the precise mechanisms that regulate ATM autophosphorylation are not fully understood. By treating cells with okadaic acid, a cell-permeable protein phosphatase inhibitor, together with assays to quantify the activity of particular protein phosphatases, we have demonstrated that the autophosphorylation of ATM on serine 1981 is regulated by a protein phosphatase 2A-like activity. Here, we describe the series of experiments that employed protein phosphatase inhibitors to establish that ATM was regulated by a type-2A protein phosphatase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Linhagem Celular Tumoral , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Humanos , Immunoblotting , Imunoprecipitação , Ácido Okadáico/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/fisiologia , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2
14.
Methods Mol Biol ; 365: 127-32, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17200559

RESUMO

The catalytic subunit of PP2A (PP2Ac) can be purified in milligram quantities from bovine heart using ethanol precipitation, ammonium sulfate precipitation, ion exchange and size exclusion chromatography. The detailed procedure is described to purify PP2Ac over 4 d.


Assuntos
Miocárdio/enzimologia , Fosfoproteínas Fosfatases/isolamento & purificação , Sulfato de Amônio/química , Animais , Domínio Catalítico , Bovinos , Cromatografia em Gel , Cromatografia por Troca Iônica , Etanol/química , Fosfoproteínas Fosfatases/química
15.
Sci STKE ; 2005(296): re10, 2005 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16091624

RESUMO

Many signal transduction events are orchestrated by specific interactions of proteins mediated through discrete phosphopeptide-binding motifs. Although several phosphospecific-binding domains are now known, 14-3-3s were the first proteins recognized to specifically bind a discrete phosphoserine or phosphothreonine motif. The 14-3-3 proteins are a family of ubiquitously expressed, exclusively eukaryotic proteins with an astonishingly large number of binding partners. Consequently, 14-3-3s modulate an enormous and diverse group of cellular processes. The effects of 14-3-3 proteins on their targets can be broadly defined using three categories: (i) conformational change; (ii) physical occlusion of sequence-specific or structural protein features; and (iii) scaffolding. This review will describe the current state of knowledge on 14-3-3 proteins, highlighting several important advances, and will attempt to provide a framework by which 14-3-3 functions can be understood.


Assuntos
Proteínas 14-3-3/fisiologia , Transdução de Sinais , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência Consenso , Humanos , Dados de Sequência Molecular , Complexos Multiproteicos , Fosforilação , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais/fisiologia , Especificidade por Substrato
16.
BMC Bioinformatics ; 6: 6, 2005 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-15644130

RESUMO

BACKGROUND: Cyclic nucleotides are ubiquitous intracellular messengers. Until recently, the roles of cyclic nucleotides in plant cells have proven difficult to uncover. With an understanding of the protein domains which can bind cyclic nucleotides (CNB and GAF domains) we scanned the completed genomes of the higher plants Arabidopsis thaliana (mustard weed) and Oryza sativa (rice) for the effectors of these signalling molecules. RESULTS: Our analysis found that several ion channels and a class of thioesterases constitute the possible cyclic nucleotide binding proteins in plants. Contrary to some reports, we found no biochemical or bioinformatic evidence for a plant cyclic nucleotide regulated protein kinase, suggesting that cyclic nucleotide functions in plants have evolved differently than in mammals. CONCLUSION: This paper provides a molecular framework for the discussion of cyclic nucleotide function in plants, and resolves a longstanding debate about the presence of a cyclic nucleotide dependent kinase in plants.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte/química , Biologia Computacional/métodos , Genes de Plantas , Genoma de Planta , Oryza/genética , Oryza/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Western Blotting , Proteínas de Transporte/metabolismo , AMP Cíclico/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma , Canais Iônicos/química , Dados de Sequência Molecular , Nucleotídeos Cíclicos , Filogenia , Proteínas de Plantas/química , Canais de Potássio/química , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Tioléster Hidrolases/química , Fatores de Transcrição/química
17.
Biochim Biophys Acta ; 1699(1-2): 145-54, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15158722

RESUMO

The PII signal transduction protein is regulated by covalent modification in most prokaryotic organisms. In enteric bacteria PII is uridylylated on a specific tyrosine residue in the T-loop region, while in certain cyanobacteria it is phosphorylated at the serine residue two positions away from the equivalent modified tyrosine of enteric bacteria. Covalent modification functions primarily to signal cellular nitrogen status in prokaryotes. Here we have examined the phospho-status of Arabidopsis thaliana PII under various growth conditions employing a variety of techniques, including in vivo labeling, phosphospecific antibodies, protein phosphatase treatment, mass spectrometry and protein kinase assays. All results indicate that plant PII is not regulated by phosphorylation. Edman sequencing of immunoprecipitated A. thaliana PII revealed the N-terminal sequences AQISSD and QISSDY, indicating that the mature protein is cleaved from its transit peptide in vivo at the site(s) predicted by ChloroP. Western blot analysis also demonstrated that plant PII protein expression varies little with nutrient regime.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Transdução de Sinais , Arabidopsis/citologia , Western Blotting , Cloroplastos/metabolismo , Imunoglobulina G/imunologia , Proteínas PII Reguladoras de Nitrogênio , Fosfoproteínas Fosfatases/farmacologia , Fosforilação , Testes de Precipitina , Proteínas Quinases/farmacologia , Serina/química , Tirosina/química
18.
Sci STKE ; 2004(242): re10, 2004 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-15266103

RESUMO

Many signal transduction events are orchestrated by specific interactions of proteins mediated through discrete phosphopeptide-binding motifs. Although several phosphospecific-binding domains are now known, 14-3-3s were the first proteins recognized to specifically bind a discrete phosphoserine or phosphothreonine motif. The 14-3-3 proteins are a family of ubiquitously expressed, exclusively eukaryotic proteins with an astonishingly large number of binding partners. Consequently, 14-3-3s modulate an enormous and diverse group of cellular processes. The effects of 14-3-3 proteins on their targets can be broadly defined using three categories: (i) conformational change; (ii) physical occlusion of sequence-specific or structural protein features; and (iii) scaffolding. This review will describe the current state of knowledge on 14-3-3 proteins, highlighting several important advances, and will attempt to provide a framework by which 14-3-3 functions can be understood.


Assuntos
Tirosina 3-Mono-Oxigenase/fisiologia , Proteínas 14-3-3 , Sequência de Aminoácidos , Animais , Humanos , Modelos Moleculares , Dados de Sequência Molecular
19.
Plant Physiol Biochem ; 43(9): 854-61, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16289950

RESUMO

In Daucus carota, N-acetylglutamate-5-phosphotransferase (NAGK; E.C. 2.7.2.8) specific activity was shown to correlate with the progression of somatic embryogenesis and was highest in the latter stages, where growth was most rapid. The enzyme was subsequently purified greater than 1200-fold using heat treatment, ammonium sulfate fractionation, gel filtration, anion exchange and dye ligand chromatography. Carrot NAGK was shown to have a subunit molecular weight of 31 kDa and form a hexamer. The Kms for NAG and ATP are 5.24 and 2.11 mM, respectively. Arginine (Arg) is a K-type allosteric inhibitor of the enzyme, and Hill coefficients in the order of 5 in the presence of Arg suggest that the enzyme is highly cooperative. D. carota NAGK does not bind to Arabidopsis thaliana PII affinity columns, nor does the A. thaliana PII increase NAGK specific activity, indicating its cellular location is probably different.


Assuntos
Daucus carota/enzimologia , Perfilação da Expressão Gênica , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Sementes/enzimologia , Daucus carota/citologia , Eletroforese em Gel de Poliacrilamida , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/isolamento & purificação , Sementes/crescimento & desenvolvimento
20.
PLoS One ; 10(8): e0132863, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26241330

RESUMO

Mg+2/Mn+2-dependent type 2C protein phosphatases (PP2Cs) are ubiquitous in eukaryotes, mediating diverse cellular signaling processes through metal ion catalyzed dephosphorylation of target proteins. We have identified a distinct PP2C sequence class ("PP2C7s") which is nearly universally distributed in Eukaryotes, and therefore apparently ancient. PP2C7s are by far most prominent and diverse in plants and green algae. Combining phylogenetic analysis, subcellular localization predictions, and a distillation of publically available gene expression data, we have traced the evolutionary trajectory of this gene family in photosynthetic eukaryotes, demonstrating two major sequence assemblages featuring a succession of increasingly derived sub-clades. These display predominant expression moving from an ancestral pattern in photosynthetic tissues toward non-photosynthetic, specialized and reproductive structures. Gene co-expression network composition strongly suggests a shifting pattern of PP2C7 gene functions, including possible regulation of starch metabolism for one homologue set in Arabidopsis and rice. Distinct plant PP2C7 sub-clades demonstrate novel amino terminal protein sequences upon motif analysis, consistent with a shifting pattern of regulation of protein function. More broadly, neither the major events in PP2C sequence evolution, nor the origin of the diversity of metal binding characteristics currently observed in different PP2C lineages, are clearly understood. Identification of the PP2C7 sequence clade has allowed us to provide a better understanding of both of these issues. Phylogenetic analysis and sequence comparisons using Hidden Markov Models strongly suggest that PP2Cs originated in Bacteria (Group II PP2C sequences), entered Eukaryotes through the ancestral mitochondrial endosymbiosis, elaborated in Eukaryotes, then re-entered Bacteria through an inter-domain gene transfer, ultimately producing bacterial Group I PP2C sequences. A key evolutionary event, occurring first in ancient Eukaryotes, was the acquisition of a conserved aspartate in classic Motif 5. This has been inherited subsequently by PP2C7s, eukaryotic PP2Cs and bacterial Group I PP2Cs, where it is crucial to the formation of a third metal binding pocket, and catalysis.


Assuntos
Proteínas de Bactérias/genética , Clorófitas/enzimologia , Evolução Molecular , Genes de Plantas , Fosfoproteínas Fosfatases/genética , Fotossíntese/genética , Proteínas de Plantas/genética , Plantas/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas de Bactérias/química , Clorófitas/genética , Cloroplastos/enzimologia , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Magnésio/fisiologia , Mitocôndrias/enzimologia , Estrutura Molecular , Fosfoproteínas Fosfatases/química , Filogenia , Proteínas de Plantas/química , Plantas/genética , Proteína Fosfatase 2C , Estrutura Secundária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA