Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurol ; 26(7): 969-e71, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30685877

RESUMO

BACKGROUND AND PURPOSE: Pre-surgical evaluation of pediatric patients with drug-resistant focal epilepsy and negative (non-lesional) magnetic resonance imaging (MRI) is particularly challenging. Focal cortical dysplasia (FCD), a frequent pathological substrate in such setting, may be subtle on MRI and evade detection. The aim of this study was to use voxel-based MRI postprocessing to improve the detection of subtle FCD in pediatric surgical candidates. METHODS: A consecutive cohort of pediatric patients undergoing pre-surgical evaluation with a negative MRI by visual analysis was included. MRI postprocessing was performed using a voxel-based morphometric analysis program (MAP) on T1-weighted volumetric MRI, with comparison to an age-specific normal pediatric database. The pertinence of MAP-positive areas was confirmed by surgical outcome and pathology. RESULTS: A total of 78 patients were included. Forty-four patients (56%) had positive MAP regions. Complete resection of the MAP-positive regions was positively associated with seizure-free outcome compared with the no/partial resection group (P < 0.001). Patients with no/partial resection of the MAP-positive regions had worse seizure outcomes than the MAP-negative group (P = 0.002). The MAP-positive rate was 100%, 77%, 63% and 40% in the 3-5, 5-10, 10-15 and 15-21 year age groups, respectively. MAP-positive rates were 45% in patients with temporal resection and 63% in patients with extratemporal resection. Complete resection of the MAP-positive regions was positively associated with seizure-free outcome in the extratemporal group (P = 0.001) but not in the temporal group (P = 0.070). CONCLUSION: Our data suggest the importance of using MRI postprocessing in the pre-surgical evaluation process of pediatric epilepsy patients with apparently normal MRI.


Assuntos
Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Convulsões/diagnóstico por imagem , Adolescente , Criança , Pré-Escolar , Bases de Dados Factuais , Epilepsia Resistente a Medicamentos/cirurgia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Estudos Retrospectivos , Convulsões/cirurgia , Adulto Jovem
2.
AJNR Am J Neuroradiol ; 37(12): 2348-2355, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27609620

RESUMO

BACKGROUND AND PURPOSE: Rasmussen syndrome, also known as Rasmussen encephalitis, is typically associated with volume loss of the affected hemisphere of the brain. Our aim was to apply automated quantitative volumetric MR imaging analyses to patients diagnosed with Rasmussen encephalitis, to determine the predictive value of lobar volumetric measures and to assess regional atrophy differences as well as monitor disease progression by using these measures. MATERIALS AND METHODS: Nineteen patients (42 scans) with diagnosed Rasmussen encephalitis were studied. We used 2 control groups: one with 42 age- and sex-matched healthy subjects and the other with 42 epileptic patients without Rasmussen encephalitis with the same disease duration as patients with Rasmussen encephalitis. Volumetric analysis was performed on T1-weighted images by using BrainSuite. Ratios of volumes from the affected hemisphere divided by those from the unaffected hemisphere were used as input to a logistic regression classifier, which was trained to discriminate patients from controls. Using the classifier, we compared the predictive accuracy of all the volumetric measures. These ratios were used to further assess regional atrophy differences and correlate with epilepsy duration. RESULTS: Interhemispheric and frontal lobe ratios had the best prediction accuracy for separating patients with Rasmussen encephalitis from healthy controls and patient controls without Rasmussen encephalitis. The insula showed significantly more atrophy compared with all the other cortical regions. Patients with longitudinal scans showed progressive volume loss in the affected hemisphere. Atrophy of the frontal lobe and insula correlated significantly with epilepsy duration. CONCLUSIONS: Automated quantitative volumetric analysis provides accurate separation of patients with Rasmussen encephalitis from healthy controls and epileptic patients without Rasmussen encephalitis, and thus may assist the diagnosis of Rasmussen encephalitis. Volumetric analysis could also be included as part of follow-up for patients with Rasmussen encephalitis to assess disease progression.


Assuntos
Encéfalo/diagnóstico por imagem , Encefalite/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Atrofia/patologia , Encéfalo/patologia , Encefalite/patologia , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA