Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33608289

RESUMO

The isolation of bacteria that represent the diversity of autochthonous taxa in the gastrointestinal tract is necessary to fully ascertain their function, but the majority of bacterial species inhabiting the intestines of mammals are fastidious and thus challenging to isolate. The goal of the current study was to isolate a diverse assemblage of anaerobic bacteria from the intestine of pigs as a model animal and to comparatively examine various novel and traditional isolation strategies. Methods used included long-term enrichments, direct plating, a modified ichip method, as well as ethanol and tyndallization treatments of samples to select for endospore-forming taxa. A total of 234 taxa (91 previously uncultured) comprising 80 genera and 7 phyla were isolated from mucosal and luminal samples from the ileum, cecum, ascending colon, and spiral colon removed from animals under anesthesia. The diversity of bacteria isolated from the large intestine was less than that detected by next-generation sequence analysis. Long-term enrichments yielded the greatest diversity of recovered bacteria (Shannon's index [SI] = 4.7). Methods designed to isolate endospore-forming bacteria produced the lowest diversity (SI ≤ 2.7), with tyndallization yielding lower diversity than the ethanol method. However, the isolation frequency of previously uncultured bacteria was highest for ethanol-treated samples (41.9%) and the ichip method (32.5%). The goal of recovering a diverse collection of enteric bacteria was achieved. Importantly, the study findings demonstrate that it is necessary to use a combination of methods in concert to isolate bacteria that are representative of the diversity within the intestines of mammals.IMPORTANCE This work determined that using a combination of anaerobic isolation methods is necessary to increase the diversity of bacteria recovered from the intestines of monogastric mammals. Direct plating methods have traditionally been used to isolate enteric bacteria, and recent methods (e.g., diffusion methods [i.e., ichip] or differential isolation of endospore-forming bacteria) have been suggested to be superior at increasing diversity, including the recovery of previously uncultured taxa. We showed that long-term enrichment of samples using a variety of media isolated the most diverse and novel bacteria. Application of the ichip method delivered a diversity of bacteria similar to those of enrichment and direct plating methods. Methods that selected for endospore-forming bacteria generated collections that differed in composition from those of other methods with reduced diversity. However, the ethanol treatment frequently isolated novel bacteria. By using a combination of methods in concert, a diverse collection of enteric bacteria was generated for ancillary experimentation.


Assuntos
Bactérias Anaeróbias/isolamento & purificação , Microbioma Gastrointestinal , Intestinos/microbiologia , Animais , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/genética , Técnicas Bacteriológicas , Bactérias Formadoras de Endosporo/classificação , Bactérias Formadoras de Endosporo/genética , Bactérias Formadoras de Endosporo/isolamento & purificação , Microbioma Gastrointestinal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Suínos
2.
Appl Environ Microbiol ; 86(21)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32859592

RESUMO

Salmonella enterica serovar Typhimurium is a prevalent incitant of enteritis in human beings and nonhuman animals. It has been proposed that host defense responses incited by Salmonella allow the bacterium to overcome colonization resistance. Piglets (n = 24) were orally inoculated with S. enterica serovar Typhimurium DT104 or buffer alone, and the host and microbial responses were temporally examined at the acute (2 days postinoculation [dpi]), subacute (6 dpi), and recovery (10 dpi) stages of salmonellosis. At the acute stage of disease, body temperatures were elevated, and feed consumption and weight gain were reduced. The densities of Salmonella associated with the gut mucosa decreased over time, with higher densities of the bacterium in the ileum and the large intestine. Moreover, substantive histopathological changes were observed as a function of time, with prominent epithelial injury and neutrophil infiltration observed at 2 dpi. Correspondingly, a variety of host metrics were temporally affected in piglets with salmonellosis (e.g., TNFα, IFNγ, PR39, ßD2, iNOS, IL8, REGIIIγ). The enteric microbiota was characterized using culture-independent and -dependent methods in concert, and taxon- and location-specific changes to the microbiota were observed in infected piglets. Bacteroides spp. (e.g., Bacteroides uniformis, Bacteroides fragilis), Streptococcus spp. (e.g., Streptococcus gallolyticus), and various Gammaproteobacteria were highly associated with inflamed tissues, while bacteria within the Ruminococcaceae and Veillonellaceae families were mainly associated with healthy mucosae. In conclusion, the study findings showed that S Typhimurium incited temporal and spatial modifications to the swine autochthonous microbiota, and to host defense responses, that were consistent with overcoming colonization resistance to incite salmonellosis in swine.IMPORTANCE Limited information is available on host and enteric microbiota responses incited by Salmonella enterica serovar Typhimurium in swine and on possible mechanisms by which the bacterium overcomes colonization resistance to incite salmonellosis. Temporal characterization of a variety of host metrics in piglets (e.g., physiological, histopathological, and immunological) showed the importance of studying the progression of salmonellosis. A number of host responses integrally associated with disease development were identified. Utilization of next-generation sequence analysis to characterize the enteric microbiota was found to lack sufficient resolution; however, culture-dependent and -independent methods in combination identified taxon- and location-specific changes to bacterial communities in infected piglets. The study identified bacterial and host responses associated with salmonellosis, which will be beneficial in understanding colonization resistance and in the development of effective alternatives to antibiotics to mitigate salmonellosis.


Assuntos
Ceco/microbiologia , Colo/microbiologia , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos/imunologia , Íleo/microbiologia , Salmonella typhimurium/fisiologia , Animais , Ceco/imunologia , Colo/imunologia , Íleo/imunologia , Masculino , Distribuição Aleatória , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Fatores de Tempo
3.
Can J Microbiol ; 66(4): 288-302, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31986063

RESUMO

Characterization of the microbiota of chickens is of current interest. The goals of the current study were to apply anaerobic isolation methods to comprehensively isolate and identify bacteria from the gastrointestinal tract of chickens and their environment. Bacterial communities within the drinking water were dominated by Escherichia, whereas communities in litter were more representative of the cecum. The crop and small intestine (jejunum and ileum) were dominated by Lactobacillus and Enterococcus spp., and the cecum was dominated by Proteus spp. The collection of bacteria isolated was dominated by Enterococcus spp., Escherichia/Shigella spp., Lactobacillus spp., and Proteus spp.; however, many rare taxa were observed. These included members of the Clostridiales and Clostridium spp., which were commonly isolated from the ileum and cecum. Bacteria isolated by enrichment and direct plating differed. The selective de Man-Rogosa-Sharpe agar was commonly associated with the isolation of Lactobacillus spp. and yielded the lowest diversity of all methods utilized. Increased diversity and frequency of Clostridium spp. was observed in enrichments of blood and mucus or by plating on Columbia agar supplemented with 10% blood and gentamicin. The bacteria isolated from this study provide source material for genomic and functional studies in chicken hosts.


Assuntos
Bactérias Anaeróbias/isolamento & purificação , Galinhas/microbiologia , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/genética , Ceco/microbiologia , Íleo/microbiologia , Filogenia
4.
Front Microbiol ; 14: 1104667, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077241

RESUMO

Seaweeds have received a great deal of attention recently for their potential as methane-suppressing feed additives in ruminants. To date, Asparagopsis taxiformis has proven a potent enteric methane inhibitor, but it is a priority to identify local seaweed varieties that hold similar properties. It is essential that any methane inhibitor does not compromise the function of the rumen microbiome. In this study, we conducted an in vitro experiment using the RUSITEC system to evaluate the impact of three red seaweeds, A. taxiformis, Palmaria mollis, and Mazzaella japonica, on rumen prokaryotic communities. 16S rRNA sequencing showed that A. taxiformis had a profound effect on the microbiome, particularly on methanogens. Weighted Unifrac distances showed significant separation of A. taxiformis samples from the control and other seaweeds (p < 0.05). Neither P. mollis nor M. japonica had a substantial effect on the microbiome (p > 0.05). A. taxiformis reduced the abundance of all major archaeal species (p < 0.05), leading to an almost total disappearance of the methanogens. Prominent fiber-degrading and volatile fatty acid (VFA)-producing bacteria including Fibrobacter and Ruminococcus were also inhibited by A. taxiformis (p < 0.05), as were other genera involved in propionate production. The relative abundance of several other bacteria including Prevotella, Bifidobacterium, Succinivibrio, Ruminobacter, and unclassified Lachnospiraceae were increased by A. taxiformis suggesting that the rumen microbiome adapted to an initial perturbation. Our study provides baseline knowledge of microbial dynamics in response to seaweed feeding over an extended period and suggests that feeding A. taxiformis to cattle to reduce methane may directly, or indirectly, inhibit important fiber-degrading and VFA-producing bacteria.

5.
Pathogens ; 11(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36145404

RESUMO

A microbiota transplant (MT) originating from mature adult chicken ceca and propagated in bioreactors was administered to day-old broiler chicks to ascertain the degree to which, and how, the MT affects Clostridium perfringens (Cp)-incited necrotic enteritis (NE). Using a stress predisposition model of NE, birds administered the MT and challenged with Cp showed fewer necrotic lesions, and exhibited a substantially higher α- and ß-diversity of bacteria in their jejunum and ceca. Birds challenged with Cp and not administered the MT showed decreased Lactobacillus and increased Clostridium sensu strico 1 in the jejunum. In ceca, Megamonas, a genus containing butyrate-producing bacteria, was only present in birds administered the MT, and densities of this genus were increased in birds challenged with Cp. Metabolite profiles in cecal digesta were altered in birds administered the MT and challenged with the pathogen; 59 metabolites were differentially abundant following MT treatment, and the relative levels of short chain fatty acids, butyrate, valerate, and propionate, were decreased in birds with NE. Birds administered the MT and challenged with Cp showed evidence of enhanced restoration of intestinal barrier functions, including elevated mRNA of MUC2B, MUC13, and TJP1. Likewise, birds administered the MT exhibited higher mRNA of IL2, IL17A, and IL22 at 2-days post-inoculation with Cp, indicating that these birds were better immunologically equipped to respond to pathogen challenge. Collectively, study findings demonstrated that administering a MT containing a diverse mixture of microorganisms to day-old birds ameliorated NE in broilers by increasing bacterial diversity and promoting positive immune responses.

6.
Microorganisms ; 8(12)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260318

RESUMO

Canola meal (CM), the protein-rich by-product of canola oil extraction, has shown promise as an alternative feedstuff and protein supplement in poultry diets, yet its use has been limited due to the abundance of plant cell wall fibre, specifically non-starch polysaccharides (NSP) and lignin. The addition of exogenous enzymes to promote the digestion of CM NSP in chickens has potential to increase the metabolizable energy of CM. We isolated chicken cecal bacteria from a continuous-flow mini-bioreactor system and selected for those with the ability to metabolize CM NSP. Of 100 isolates identified, Bacteroides spp. and Enterococcus spp. were the most common species with these capabilities. To identify enzymes specifically for the digestion of CM NSP, we used a combination of glycomics techniques, including enzyme-linked immunosorbent assay characterization of the plant cell wall fractions, glycosidic linkage analysis (methylation-GC-MS analysis) of CM NSP and their fractions, bacterial growth profiles using minimal media supplemented with CM NSP, and the sequencing and de novo annotation of bacterial genomes of high-efficiency CM NSP utilizing bacteria. The SACCHARIS pipeline was used to select plant cell wall active enzymes for recombinant production and characterization. This approach represents a multidisciplinary innovation platform to bioprospect endogenous CAZymes from the intestinal microbiota of herbivorous and omnivorous animals which is adaptable to a variety of applications and dietary polysaccharides.

7.
Nat Commun ; 9(1): 1043, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535379

RESUMO

In red algae, the most abundant principal cell wall polysaccharides are mixed galactan agars, of which agarose is a common component. While bioconversion of agarose is predominantly catalyzed by bacteria that live in the oceans, agarases have been discovered in microorganisms that inhabit diverse terrestrial ecosystems, including human intestines. Here we comprehensively define the structure-function relationship of the agarolytic pathway from the human intestinal bacterium Bacteroides uniformis (Bu) NP1. Using recombinant agarases from Bu NP1 to completely depolymerize agarose, we demonstrate that a non-agarolytic Bu strain can grow on GAL released from agarose. This relationship underscores that rare nutrient utilization by intestinal bacteria is facilitated by the acquisition of highly specific enzymes that unlock inaccessible carbohydrate resources contained within unusual polysaccharides. Intriguingly, the agarolytic pathway is differentially distributed throughout geographically distinct human microbiomes, reflecting a complex historical context for agarose consumption by human beings.


Assuntos
Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Sefarose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Humanos , Redes e Vias Metabólicas/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Simbiose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA