Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Transplant ; 24(6): 933-943, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38228228

RESUMO

Following solid organ transplantation, small precursor populations of polyclonal CD8+ T cells specific for any graft-expressed antigen preferentially expand their high-affinity clones. This phenomenon, termed "avidity maturation," results in a larger population of CD8+ T cells with increased sensitivity to alloantigen, posing a greater risk for graft rejection. Using a mouse model of minor-mismatched skin transplantation, coupled with the tracking of 2 skin graft-reactive CD8+ T cell receptor-transgenic tracer populations with high and low affinity for the same peptide-major histocompatibility complex, we explored the conventional paradigm that CD8+ T cell avidity maturation occurs through T cell receptor affinity-based competition for cognate antigen. Our data revealed "interclonal CD8-CD8 help," whereby lower/intermediate affinity clones help drive the preferential expansion of their higher affinity counterparts in an interleukin-2/CD25-dependent manner. Consequently, the CD8-helped high-affinity clones exhibit greater expansion and develop augmented effector functions in the presence of their low-affinity counterparts, correlating with more severe graft damage. Finally, interclonal CD8-CD8 help was suppressed by costimulation blockade treatment. Thus, high-affinity CD8+ T cells can leverage help from low-affinity CD8+ T cells of identical specificity to promote graft rejection. Suppressing provision of interclonal CD8-CD8 help may be important to improve transplant outcomes.


Assuntos
Linfócitos T CD8-Positivos , Rejeição de Enxerto , Camundongos Endogâmicos C57BL , Transplante de Pele , Animais , Linfócitos T CD8-Positivos/imunologia , Camundongos , Rejeição de Enxerto/imunologia , Isoantígenos/imunologia , Camundongos Transgênicos , Camundongos Endogâmicos BALB C , Sobrevivência de Enxerto/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/genética
2.
J Clin Microbiol ; 61(8): e0043823, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37395662

RESUMO

Bacteria of the genus Brucella are facultative intracellular parasites that cause brucellosis, a severe animal and human disease. Recently, a group of taxonomists merged the brucellae with the primarily free-living, phylogenetically related Ochrobactrum spp. in the genus Brucella. This change, founded only on global genomic analysis and the fortuitous isolation of some opportunistic Ochrobactrum spp. from medically compromised patients, has been automatically included in culture collections and databases. We argue that clinical and environmental microbiologists should not accept this nomenclature, and we advise against its use because (i) it was presented without in-depth phylogenetic analyses and did not consider alternative taxonomic solutions; (ii) it was launched without the input of experts in brucellosis or Ochrobactrum; (iii) it applies a non-consensus genus concept that disregards taxonomically relevant differences in structure, physiology, population structure, core-pangenome assemblies, genome structure, genomic traits, clinical features, treatment, prevention, diagnosis, genus description rules, and, above all, pathogenicity; and (iv) placing these two bacterial groups in the same genus creates risks for veterinarians, medical doctors, clinical laboratories, health authorities, and legislators who deal with brucellosis, a disease that is particularly relevant in low- and middle-income countries. Based on all this information, we urge microbiologists, bacterial collections, genomic databases, journals, and public health boards to keep the Brucella and Ochrobactrum genera separate to avoid further bewilderment and harm.


Assuntos
Brucella , Ochrobactrum , Ochrobactrum/classificação , Ochrobactrum/genética , Ochrobactrum/patogenicidade , Ochrobactrum/fisiologia , Brucella/classificação , Brucella/genética , Brucella/patogenicidade , Brucella/fisiologia , Terminologia como Assunto , Filogenia , Brucelose/tratamento farmacológico , Brucelose/microbiologia , Humanos , Infecções Oportunistas/microbiologia
3.
Infect Immun ; 87(5)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804100

RESUMO

Brucella organisms are intracellular stealth pathogens of animals and humans. The bacteria overcome the assault of innate immunity at early stages of an infection. Removal of polymorphonuclear neutrophils (PMNs) at the onset of adaptive immunity against Brucella abortus favored bacterial elimination in mice. This was associated with higher levels of interferon gamma (IFN-γ) and a higher proportion of cells expressing interleukin 6 (IL-6) and inducible nitric oxide synthase (iNOS), compatible with M1 macrophages, in PMN-depleted B. abortus-infected (PMNd-Br) mice. At later times in the acute infection phase, the amounts of IFN-γ fell while IL-6, IL-10, and IL-12 became the predominant cytokines in PMNd-Br mice. IL-4, IL-1ß, and tumor necrosis factor alpha (TNF-α) remained at background levels at all times of the infection. Depletion of PMNs at the acute stages of infection promoted the premature resolution of spleen inflammation. The efficient removal of bacteria in the PMNd-Br mice was not due to an increase of antibodies, since the immunoglobulin isotype responses to Brucella antigens were dampened. Anti-Brucella antibodies abrogated the production of IL-6, IL-10, and IL-12 but did not affect the levels of IFN-γ at later stages of infection in PMNd-Br mice. These results demonstrate that PMNs have an active role in modulating the course of B. abortus infection after the adaptive immune response has already developed.


Assuntos
Imunidade Adaptativa/imunologia , Brucella abortus/imunologia , Brucelose/imunologia , Brucelose/prevenção & controle , Imunidade Inata/imunologia , Pneumopatias/imunologia , Neutrófilos/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
4.
PLoS Pathog ; 11(5): e1004853, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25946018

RESUMO

Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1ß by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN.


Assuntos
Brucella abortus/imunologia , Brucelose/imunologia , Lipopolissacarídeos/imunologia , Mortalidade Prematura , Neutrófilos/citologia , Brucella abortus/isolamento & purificação , Morte Celular , Citocinas/metabolismo , Humanos , Imunidade Inata/imunologia , Leucócitos/metabolismo
5.
Infect Immun ; 84(6): 1712-21, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27001541

RESUMO

Brucella abortus is an intracellular pathogen of monocytes, macrophages, dendritic cells, and placental trophoblasts. This bacterium causes a chronic disease in bovines and in humans. In these hosts, the bacterium also invades neutrophils; however, it fails to replicate and just resists the killing action of these leukocytes without inducing significant activation or neutrophilia. Moreover, B. abortus causes the premature cell death of human neutrophils. In the murine model, the bacterium is found within macrophages and dendritic cells at early times of infection but seldom in neutrophils. Based on this observation, we explored the interaction of mouse neutrophils with B. abortus In contrast to human, dog, and bovine neutrophils, naive mouse neutrophils fail to recognize smooth B. abortus bacteria at early stages of infection. Murine normal serum components do not opsonize smooth Brucella strains, and neutrophil phagocytosis is achieved only after the appearance of antibodies. Alternatively, mouse normal serum is capable of opsonizing rough Brucella mutants. Despite this, neutrophils still fail to kill Brucella, and the bacterium induces cell death of murine leukocytes. In addition, mouse serum does not opsonize Yersinia enterocolitica O:9, a bacterium displaying the same surface polysaccharide antigen as smooth B. abortus Therefore, the lack of murine serum opsonization and absence of murine neutrophil recognition are specific, and the molecules responsible for the Brucella camouflage are N-formyl-perosamine surface homopolysaccharides. Although the mouse is a valuable model for understanding the immunobiology of brucellosis, direct extrapolation from one animal system to another has to be undertaken with caution.


Assuntos
Brucella abortus/imunologia , Evasão da Resposta Imune , Manose/imunologia , Neutrófilos/microbiologia , Fagocitose , Polissacarídeos Bacterianos/imunologia , Animais , Brucella abortus/crescimento & desenvolvimento , Sequência de Carboidratos , Bovinos , Morte Celular , Cães , Expressão Gênica , Especificidade de Hospedeiro , Humanos , Imunidade Humoral , Imunidade Inata , Manose/análogos & derivados , Camundongos , Neutrófilos/imunologia , Proteínas Opsonizantes/genética , Proteínas Opsonizantes/imunologia , Polissacarídeos Bacterianos/química , Yersinia enterocolitica/crescimento & desenvolvimento , Yersinia enterocolitica/imunologia
6.
J Clin Invest ; 133(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37676735

RESUMO

Even when successfully induced, immunological tolerance to solid organs remains vulnerable to inflammatory insults, which can trigger rejection. In a mouse model of cardiac allograft tolerance in which infection with Listeria monocytogenes (Lm) precipitates rejection of previously accepted grafts, we showed that recipient CD4+ TCR75 cells reactive to a donor MHC class I-derived peptide become hypofunctional if the allograft is accepted for more than 3 weeks. Paradoxically, infection-induced transplant rejection was not associated with transcriptional or functional reinvigoration of TCR75 cells. We hypothesized that there is heterogeneity in the level of dysfunction of different allospecific T cells, depending on duration of their cognate antigen expression. Unlike CD4+ TCR75 cells, CD4+ TEa cells specific for a peptide derived from donor MHC class II, an alloantigen whose expression declines after transplantation but remains inducible in settings of inflammation, retained function in tolerant mice and expanded during Lm-induced rejection. Repeated injections of alloantigens drove hypofunction in TEa cells and rendered grafts resistant to Lm-dependent rejection. Our results uncover a functional heterogeneity in allospecific T cells of distinct specificities after tolerance induction and reveal a strategy to defunctionalize a greater repertoire of allospecific T cells, thereby mitigating a critical vulnerability of tolerance.


Assuntos
Linfócitos T CD4-Positivos , Transplante de Coração , Camundongos , Animais , Transplante Homólogo , Tolerância ao Transplante , Rejeição de Enxerto/genética , Antígenos de Histocompatibilidade Classe I , Peptídeos , Isoantígenos
7.
Front Immunol ; 10: 1012, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134082

RESUMO

Brucella abortus is a stealthy intracellular bacterial pathogen of animals and humans. This bacterium promotes the premature cell death of neutrophils (PMN) and resists the killing action of these leukocytes. B. abortus-infected PMNs presented phosphatidylserine (PS) as "eat me" signal on the cell surface. This signal promoted direct contacts between PMNs and macrophages (Mϕs) and favored the phagocytosis of the infected dying PMNs. Once inside Mϕs, B. abortus replicated within Mϕs at significantly higher numbers than when Mϕs were infected with bacteria alone. The high levels of the regulatory IL-10 and the lower levels of proinflammatory TNF-α released by the B. abortus-PMN infected Mϕs, at the initial stages of the infection, suggested a non-phlogistic phagocytosis mechanism. Thereafter, the levels of proinflammatory cytokines increased in the B. abortus-PMN-infected Mϕs. Still, the efficient bacterial replication proceeded, regardless of the cytokine levels and Mϕ type. Blockage of PS with Annexin V on the surface of B. abortus-infected PMNs hindered their contact with Mϕs and hampered the association, internalization, and replication of B. abortus within these cells. We propose that B. abortus infected PMNs serve as "Trojan horse" vehicles for the efficient dispersion and replication of the bacterium within the host.


Assuntos
Brucella abortus/imunologia , Comunicação Celular/imunologia , Macrófagos/imunologia , Fagocitose/imunologia , Animais , Brucella abortus/citologia , Brucella abortus/fisiologia , Brucelose/imunologia , Brucelose/metabolismo , Brucelose/microbiologia , Morte Celular/imunologia , Divisão Celular/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Interleucina-10/imunologia , Interleucina-10/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fosfatidilserinas/imunologia , Fosfatidilserinas/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
8.
J Immunol Res ; 2018: 5370414, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30622977

RESUMO

Brucellosis is a zoonotic bacterial infection that may persist for long periods causing relapses in antibiotic-treated patients. The ability of Brucella to develop chronic infections is linked to their capacity to invade and replicate within the mononuclear phagocyte system, including the bone marrow (BM). Persistence of Brucella in the BM has been associated with hematological complications such as neutropenia, thrombocytopenia, anemia, and pancytopenia in human patients. In the mouse model, we observed that the number of Brucella abortus in the BM remained constant for up to 168 days of postinfection. This persistence was associated with histopathological changes, accompanied by augmented numbers of BM myeloid GMP progenitors, PMNs, and CD4+ lymphocytes during the acute phase (eight days) of the infection in the BM. Monocytes, PMNs, and GMP cells were identified as the cells harboring Brucella in the BM. We propose that the BM is an essential niche for the bacterium to establish long-lasting infections and that infected PMNs may serve as vehicles for dispersion of Brucella organisms, following the Trojan horse hypothesis. Monocytes are solid candidates for Brucella reservoirs in the BM.


Assuntos
Medula Óssea/microbiologia , Brucella abortus/fisiologia , Brucelose/imunologia , Linfócitos T CD4-Positivos/imunologia , Monócitos/imunologia , Células Progenitoras Mieloides/fisiologia , Neutrófilos/imunologia , Animais , Autofagia , Bovinos , Células Cultivadas , Doença Crônica , Modelos Animais de Doenças , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA