Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 23(5): 941-955, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643418

RESUMO

The identification of more efficient, clean, secure, and competitive energy supply is necessary to align with the needs of sustainable devices. For this reason, a study for developing innovative dye-sensitized solar cells (DSSCs) based on microbial pigments is reported starting from Talaromyces atroroseus GH2. The fungus was cultivated by fermentation and the extracellular pigment extract was characterized by HPLC-DAD-ESI-MS analyses. The most abundant compound among the 22 azaphilone-type pigments identified was represented by PP-O. The device's behavior was investigated in relation to electrolyte and pH for verifying the stability on time and the photovoltaic performance. Devices obtained were characterized by UV-vis measurements to verify the absorbance intensity and transmittance percentage. Moreover, photovoltaic parameters through photo-electrochemical measurements (I-V curves) and impedance characteristics by Electrochemical Impedance Spectroscopy (EIS) were determined. The best microbial device showed a short-circuit current density (Jsc) of 0.69 mA/cm2, an open-circuit photo-voltage (Voc) of 0.27 V and a Fill Factor (FF) of 0.60. Furthermore, the power conversion efficiency (PCE) of the device was 0.11%. Thus, the present study demonstrated the potential of microbial origin pigments for developing DSSCs.


Assuntos
Corantes , Energia Solar , Talaromyces , Talaromyces/química , Talaromyces/metabolismo , Corantes/química , Pigmentos Biológicos/química
2.
J Environ Manage ; 347: 119067, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778074

RESUMO

In the pursuit of sustainability, managing agro-industrial and food processing residues (AFR) efficiently is crucial. This study proposes a systematic approach to convert AFR into valuable products via solid-state fermentation (SSF). Using fungal enzyme production as a case study, this adaptable methodology suits any SSF bioprocess. Initially, AFR's physicochemical properties were evaluated to assess their feasible use as carbon sources and solid matrices for SSF. Then, five strains were screened for their capability to produce enzymes (Xylanase, X; pectinase, P; cellulase, C). Apple pomace (AP) and brewery spent grain (BSG) with Aspergillus sp. (strain G5) were selected. Subsequent steps involved a two-phase statistical approach, identifying critical factors and optimizing them. Process conditions were screened using a Plackett-Burman design, narrowing critical variables to three (BSG/AP, pH, humidity). Response Surface Methodology (Central Composite Design) further optimized these factors for co-synthesis of X, P, and C. The humidity had the most significant effect on the three responses. The optimum conditions depended on each enzyme and were further validated to maximize either X, P or C. The obtained extracts were used for pectin extraction from orange peels. The extract containing primarily xylanase (X = 582.39, P = 22.86, C = 26.10 U mL-1) showed major pectin yield recovery (12.33 ± 0.53%) and it was obtained using the optimal settings of BSG/AP (81/19), humidity (50.40%), and pH (4.58). The findings will enable adjusting process conditions to obtain enzymatic cocktails with a tailored composition for specific applications.


Assuntos
Aspergillus , Celulase , Fermentação , Hidrólise , Grão Comestível , Pectinas
3.
J Environ Manage ; 339: 117866, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030236

RESUMO

Agro-industrial by-product valorization as a feedstock for the bioproduction of high-value products has demonstrated a feasible alternative to handle the environmental impact of waste. Oleaginous yeasts are promising cell factories for the industrial production of lipids and carotenoids. Since oleaginous yeasts are aerobic microorganisms, studying the volumetric mass transfer (kLa) could facilitate the scale-up and operation of bioreactors to grant the industrial availability of biocompounds. Scale-up experiments were performed to assess the simultaneous production of lipids and carotenoids using the yeast Sporobolomyces roseus CFGU-S005 and comparing the yields in batch and fed-batch mode cultivation using agro-waste hydrolysate in a 7 L bench-top bioreactor. The results indicate that oxygen availability in the fermentation affected the simultaneous production of metabolites. The highest production of lipids (3.4 g/L) was attained using the kLa value of 22.44 h-1, while higher carotenoid accumulation of 2.58 mg/L resulted when agitation speed was increased to 350 rpm (kLa 32.16 h-1). The adapted fed-batch mode in the fermentation increased the production yields two times. The fatty acid profile was affected according to supplied aeration and after the fed-batch cultivation mode. This study showed the scale-up potential of the bioprocess using the strain S. roseus in the obtention of microbial oil and carotenoids by the valorization of agro-industrial byproducts as a carbon source.


Assuntos
Reatores Biológicos , Carotenoides , Biomassa , Ácidos Graxos , Fermentação
4.
J Environ Manage ; 293: 112966, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34098354

RESUMO

Despite a large amount of published research on the production of ligninolytic enzymes, the latter are not yet being applied to combat environmental pollution. No cost-effective process has been developed to date. This study describes an improvement of the solid-state fermentation procedure for the production of ligninolytic enzymes via Phanerochaete chrysosporium ATX by applying the Taguchi method and using an agro-industrial waste as substrate. The production of lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac) were simultaneously increased within a packed-bed column. The factors and levels studied were humidity (A: 60, 70, 80%), inoculum concentration (B: 7.5, 10.0, 12.5 × 105 spores/mL), packed density (C: 0.14, 0.16, 0.18 g/mL), and time (D: 6, 8, 10 days). The results showed that humidity was the factor with a higher effect upon LiP and Lac's production, while time was for MnP. Humidity exerted the greatest influence on the global desirability of the process. Improved conditions (A, 60%; B, 1.0 × 106 spores/mL; C, 0.17 g/mL; D, 8 days) were further validated: the results revealed an overall desirability increase of 237% over the unoptimized process. Process performance was likewise maintained at a higher scale (1:10). The results contribute to establishing a cost-effective bioprocess to produce ligninolytic enzymes by reducing the cost associated with raw materials and purification steps.


Assuntos
Lignina , Phanerochaete , Fermentação , Resíduos Industriais , Lacase/metabolismo , Lignina/metabolismo , Peroxidases/metabolismo , Phanerochaete/metabolismo
5.
Foods ; 12(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36766185

RESUMO

The work describes the carotenoid synthesis process by Rhodotorula glutinis P4M422 using an agro-industrial waste as the substrate, seeking a biorefinery platform approach for waste utilization to produce high-value molecules. A culture medium based on goat milk whey (GMW) was optimized via the Taguchi method (L9 array). Four factors (ethanol, carbon and nitrogen source, and pH) were evaluated at three levels. The carbon and nitrogen composition were the factors dominating the process performance. Optimized conditions were validated (Urea, 0.3% w/v; pH, 4.5; ethanol, 10% v/v; glucose, 6.0%), and the carotenoid production (4075 µg/L) was almost 200% higher than when using the un-optimized process (2058 µg/L). Provitamin A carotenoids torulene, ß-carotene, and γ-carotene (different proportions) were produced under all conditions. The hydrolyzed goat milk whey showed promising expectations as a low-cost source for carotenoid production by Rhodotorula glutinis P4M422. The results are important for the innovative sustainable production of carotenoid-rich matrices for different purposes (nutrition, health promotion, color) and industries (foods, nutricosmetics, nutraceuticals, feeds), notably to help to combat vitamin A deficiency.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32903677

RESUMO

The aim of this study was to evaluate the potential of pulsed electric fields (PEF) to improve the extraction of the lipid-soluble astaxanthin from fresh biomass of a wild-type (CECT 11028) and mutant (ATCC 74219) Xanthophyllomyces dendrorhous strain using ethanol as solvent. Inactivation and propidium uptake studies revealed that inactivation is a good index for estimated the proportion of irreversible permeabilized cells when inactivation is higher than 70% in the two strains. Ethanol was ineffective for extracting carotenoids from the PEF-treated cells (20 kV/cm, 135 µs) of the two strains. However, after aqueous incubation of PEF-treated X. dendrorhous ATCC 74219 cells for 12 h, up to 2.4 ± 0.05 mg/g dried weight (d.w.) of carotenoids were extracted in ethanol. From total carotenoid extracted, around 84% corresponded to all-trans astaxanthin. The detection and quantification of esterase activity in the supernatant and the relationship between the percentage of esterase activity quantified and the amount of carotenoids extracted indicate that the extraction of astaxanthin was mediated by enzymatic esterase activity triggered by PEF during incubation. On the other hand, the formation of a large lipid globule into the cytoplasm of PEF-treated X. dendrorhous CECT 11028 cells during aqueous incubation prevented carotenoid extraction. The process developed in this investigation represents a more sustainable and greener method that those previously used for extracting astaxanthin from yeast.

7.
J Hazard Mater ; 400: 123254, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32947692

RESUMO

This work aimed to provide information that contributes to establishing environmental-friendly methods for synthetic dyes' degradation. The potential decolorization capacity of the crude enzymatic extract produced by Phanerochaete chrysosporium CDBB 686 using corncob as a substrate was evaluated on seven different dyes. Critical variables affecting the in-vitro decolorization process were further evaluated and results were compared with an in-vivo decolorization system. Decolorization with enzymatic extracts presented advantages over the in-vivo system (higher or similar decolorization within a shorter period). Under improved in-vitro process conditions, the dyes with higher decolorization were: Congo red (41.84 %), Poly R-478 (56.86 %), Methyl green (69.79 %). Attempts were made to confirm the transformation of the dyes after the in-vitro process as well as to establish a molecular basis for interpreting changes in toxicity along with the degradation process. In-vitro degradation products of Methyl green presented a toxicity reduction compared with the original dye; however, increased toxicity was found for Congo red degradation products when compared with the original dyes. Thus, for future applications, it is crucial to evaluate the mechanisms of biodegradation of each target synthetic dye as well as the toxicity of the products obtained after enzymatic oxidation.


Assuntos
Corantes , Phanerochaete , Biodegradação Ambiental , Corantes/toxicidade , Vermelho Congo , Oxirredução
8.
Biotechnol Adv ; 43: 107601, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32682871

RESUMO

There has been an increased interest in replacing synthetic colorants by colorants obtained from natural sources, especially microbial pigments. Monascus pigments have been used as natural colorings and food additives in Asia for centuries but have raised toxicity issues. Recently, Talaromyces/Penicillium species have been recognized as potential strains to produce natural pigments similar to those produced by Monascus species. To date, it has not been published a literature compilation about the research and development activity of Talaromyces/Penicillium pigments. Developing a new bioprocess requires several steps, from an initial concept to a practical and feasible application. Industrial applications of fungal pigments will depend on: (i) characterization of the molecules to assure a safe consumption, (ii) stability of the pigments to the processing conditions required by the products where they will be incorporated, (iii) optimizing process conditions to achieve high yields, iv) implementing an efficient product recovery and (v) scale-up of the bioprocess. The above aspects have been reviewed in detail to evaluate the feasibility of reaching a commercial scale of the pigments produced by Talaromyces/Penicillium. Finally, the biological activities of the pigments and their potential applications are discussed.


Assuntos
Penicillium , Talaromyces , Ásia , Biotecnologia , Pigmentos Biológicos
10.
Biotechnol Prog ; 33(3): 621-632, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28371295

RESUMO

Process optimisation techniques increasingly need to be used early on in research and development of processes for new ingredients. There are different approaches and this article illustrates the main issues at stake with a method that is an industry best practice, the Taguchi method, suggesting a procedure to assess the potential impact of its drawbacks. The Taguchi method has been widely used in various industrial sectors because it minimises the experimental requirements to define an optimum region of operation, which is particularly relevant when minimising variability is a target. However, it also has drawbacks, especially the intricate confoundings generated by the experimental designs used. This work reports a process optimisation of the synthesis of red pigments by a fungal strain, Talaromyces spp. using the Taguchi methodology and proposes an approach to assess from validation trials whether the conclusions can be accepted with confidence. The work focused on optimising the inoculum characteristics, and the studied factors were spore age and concentration, agitation speed and incubation time. It was concluded that spore age was the most important factor for both responses, with optimum results at 5 days old, with the best other conditions being spores concentration, 100,000 (spores/mL); agitation, 200 rpm; and incubation time, 84 h. The interactive effects can be considered negligible and therefore this is an example where a simple experimental design approach was successful in speedily indicating conditions able to increase pigment production by 63% compared to an average choice of settings. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:621-632, 2017.


Assuntos
Talaromyces/metabolismo , Pigmentos Biológicos/metabolismo , Projetos de Pesquisa , Esporos Fúngicos/metabolismo
11.
J Fungi (Basel) ; 3(3)2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29371551

RESUMO

A high percentage of the pigments produced by Talaromyces spp. remains inside the cell, which could lead to a high product concentration inhibition. To overcome this issue an extractive fermentation process, perstraction, was suggested, which involves the extraction of the intracellular products out of the cell by using a two-phase system during the fermentation. The present work studied the effect of various surfactants on secretion of intracellular pigments produced by Talaromyces spp. in submerged fermentation. Surfactants used were: non-ionic surfactants (Tween 80, Span 20 and Triton X-100) and a polyethylene glycerol polymer 8000, at different concentrations (5, 20, 35 g/L). The highest extracellular pigment yield (16 OD500nm) was reached using Triton X-100 (35 g/L), which was 44% higher than the control (no surfactant added). The effect of addition time of the selected surfactant was further studied. The highest extracellular pigment concentration (22 OD500nm) was achieved when the surfactant was added at 120 h of fermentation. Kinetics of extracellular and intracellular pigments were examined. Total pigment at the end of the fermentation using Triton X-100 was 27.7% higher than the control, confirming that the use of surfactants partially alleviated the product inhibition during the pigment production culture.

12.
J Fungi (Basel) ; 3(3)2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29371555

RESUMO

The high production yields of pigments by Talaromyces spp. and their high thermal stability have implied that industrial application interests may emerge in the food and textile industries, as they both involve subjecting the colourants to high temperatures. The present study aimed to assess the potential application of the pigments produced by Talaromyces spp. in the textile area by studying their dyeing properties. Dyeing studies were performed on wool. The dyeing process consisted of three stages: scouring, mordanting, and dyeing. Two different mordants (alum, A; ferric chloride, F) were tested at different concentrations on fabric weight (A: 5, 10, 15%; F: 10, 20, 30%). The mordanting process had a significant effect on the final colour of the dyed fabrics obtained. The values of dyeing rate constant (k), half-time of dyeing (t1/2), and sorption kinetics behaviour were evaluated and discussed. The obtained results showed that pigments produced by Talaromyces spp. could serve as a source for the natural dyeing of wool textiles.

13.
Food Sci Technol Int ; 23(4): 338-348, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28121170

RESUMO

The aim of this work was to analyze the effect of ohmic heating processing conditions on the color stability of a red pigment extract produced by Penicillium purpurogenum GH2 suspended in a buffer solution (pH 6) and in a beverage model system (pH 4). Color stability of pigmented extract was evaluated in the range of 60-90 ℃. The degradation pattern of pigments was well described by the first-order (fractional conversion) and Bigelow model. Degradation rate constants ranged between 0.009 and 0.088 min-1 in systems evaluated. Significant differences in the rate constant values of the ohmic heating-treated samples in comparison with conventional thermal treatment suggested a possible effect of the oscillating electric field generated during ohmic heating. The thermodynamic analysis also indicated differences in the color degradation mechanism during ohmic heating specifically when the pigment was suspended in the beverage model system. In general, red pigments produced by P. purpurogenum GH2 presented good thermal stability under the range of the evaluated experimental conditions, showing potential future applications in pasteurized food matrices using ohmic heating treatment.


Assuntos
Calefação , Penicillium/metabolismo , Pigmentos Biológicos , Cor , Eletricidade , Temperatura Alta , Penicillium/química , Pigmentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA