Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(7): 3976-3989, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38829254

RESUMO

We study the efficiency of several asymmetrical flow field-flow fractionation (AF4) techniques to investigate self-associating wheat gluten proteins. We compare the use of a denaturing buffer including sodium dodecyl sulfate (SDS) and a mild chaotropic solvent, water/ethanol, as the eluent, on a model gluten sample. Through a thorough analysis of the data obtained from coupled light scattering detectors and with the identification of molecular composition of the eluted protein, we evidence coelution events in several conditions. We show that the focus step used in conventional AF4 with the SDS buffer leads to the formation of aggregates that coelute with monomeric proteins. By contrast, a frit-inlet device enables the fractionation of individual wheat proteins in the SDS buffer. Interestingly conventional AF4, using water/ethanol as eluent, is an effective method for fractionating gluten proteins and their complex dynamic assemblies, which involve weak forces and are composed of both monomeric and polymeric proteins.


Assuntos
Fracionamento por Campo e Fluxo , Glutens , Dodecilsulfato de Sódio , Triticum , Fracionamento por Campo e Fluxo/métodos , Glutens/química , Triticum/química , Dodecilsulfato de Sódio/química , Proteínas de Plantas/química
2.
Soft Matter ; 15(30): 6160-6170, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31317157

RESUMO

We investigate by time-resolved synchrotron ultra-small X-ray scattering the dynamics of liquid-liquid phase-separation (LLPS) of gluten protein suspensions following a temperature quench. Samples at a fixed concentration (237 mg ml-1) but with different protein compositions are investigated. In our experimental conditions, we show that fluid viscoelastic samples depleted in polymeric glutenin phase-separate following a spinodal decomposition process. We quantitatively probe the late stage coarsening that results from a competition between thermodynamics that speeds up the coarsening rate as the quench depth increases and transport that slows down the rate. For even deeper quenches, the even higher viscoelasticity of the continuous phase leads to a "quasi" arrested phase separation. Anomalous phase-separation dynamics is by contrast measured for a gel sample rich in glutenin, due to elastic constraints. This work illustrates the role of viscoelasticity in the dynamics of LLPS in protein dispersions.


Assuntos
Fracionamento Químico/métodos , Glutens/isolamento & purificação , Viscosidade , Glutens/química , Espalhamento de Radiação , Síncrotrons , Temperatura
3.
Food Chem ; 439: 138084, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071845

RESUMO

In this work, we examined the impact of sorghum gain germination on kafirins solubility and digestibility. Two genotypes differing in their proteins and tannins contents were germinated under controlled conditions up to radicle emergence. Biochemical, physicochemical, and in vitro digestibility tests were applied on the germinated grains. Microscopic examination of grains endosperm revealed that germination resulted in pitted starch granules and protein matrix slackening. Apart cystine and the amount of free thiol groups which increased significantly, the overall amino acids composition remained rather unchanged, just as the kafirins solubility and size distribution. In contrast germination was demonstrated to improved significantly the in vitro protein digestibility, even after cooking and especially for the genotype poor in tannin. Without inducing major physicochemical changes, germination enhanced kafirins susceptibility to gastrointestinal proteases. Germination may be a way to improve the nutritional value of sorghum.


Assuntos
Sorghum , Sorghum/química , Germinação , Solubilidade , Sementes/genética , Sementes/metabolismo , Proteínas/metabolismo , Grão Comestível/química
4.
ACS Macro Lett ; : 826-831, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874451

RESUMO

We study model near-critical polymer gelling systems made of gluten protein dispersions stabilized at different distances from the gel point. We impose different shear rates and follow the time evolution of the stress. For sufficiently large shear rates, an intermediate stress overshoot is measured before reaching the steady state. We evidence self-similarity of the stress overshoot as a function of the applied shear rate for samples with various distances from the gel point, which is related to the elastic energy stored by the samples, as for dense systems close to the jamming transition. In concordance with the findings for glassy and jammed systems, we also measure that the stress after flow cessation decreases as a power law with time, with a characteristic relaxation time that depends on the shear rate previously imposed. These features revealed in nonlinear rheology could be the signature of a mesoscopic dynamics, which would depend on the extent of gelation.

5.
Food Funct ; 15(9): 5132-5146, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38682288

RESUMO

Growing demand for sustainable, plant-based protein sources has stimulated interest in new ingredients for food enrichment. This study investigates the nutritional and digestive implications of enriching wheat dough with RuBisCO, in comparison to pea protein-enriched and gluten-enriched doughs. The protein quality and digestibility of these enriched doughs were analysed through dough characterization, in vitro digestion experiments and biochemical analysis of digesta. Our findings indicate that an enrichment at 10% of RuBisCO or pea proteins improves the chemical score and the in vitro PDCAAS (IV-PDCAAS) score of wheat dough as compared to the control dough. Digestibility assays suggest that RuBisCO introduction modifies the protein hydrolysis kinetics: the nitrogen release is lower during gastric digestion but larger during intestinal digestion than other samples. The analysis of the protein composition of the soluble and insoluble parts of digesta, using size-exclusion chromatography, reveals that the protein network in RuBisCO-enriched dough is more resistant to gastric hydrolysis than the ones of other doughs. Indeed, non-covalently bound peptides and disulfide-bound protein aggregates partly composed of RuBisCO subunits remain insoluble at the end of the gastric phase. The digestion of these protein structures is then mostly performed during the intestinal phase. These results are also discussed in relation to the digestive enzymatic cleavage sites, the presence of potential enzyme inhibitors, the protein aggregation state and the secondary structures of the protein network in each dough type.


Assuntos
Digestão , Glutens , Ribulose-Bifosfato Carboxilase , Triticum , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulose-Bifosfato Carboxilase/química , Triticum/química , Triticum/metabolismo , Glutens/metabolismo , Glutens/química , Farinha/análise , Proteínas de Ervilha/química , Proteínas de Ervilha/metabolismo , Pisum sativum/química , Hidrólise , Humanos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química
6.
Biomacromolecules ; 14(5): 1493-502, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23570552

RESUMO

Cinnamaldehyde treatment of gliadin films provided a means of decreasing their solubility, increasing their molecular weight profile, and reducing their overall migration into food simulants as a consequence of the high degree of polymerization achieved. Despite losses incurred in the film manufacturing process, and the amount that remained covalently bonded with protein because of cross-linking, the addition of 1.5, 3, and 5% of cinnamaldehyde (g/100 g protein) to gliadins at pH 2 rendered 1.8, 4.8, and 11.0 mg cinnamaldehyde/g film, respectively, available to be released, and therefore to exert antimicrobial activity. Cinnamaldehyde diffusivity was largely dependent on environmental conditions, increasing from 0.49×10(-15) m2/s at 30% relative humidity (RH) to 13.1×10(-15) m2/s at 90% RH and 23 °C. This water sensitivity of films provides a mechanism with a noteworthy potential to retain the compound before its use, to trigger its release when needed, and to modulate the release rate according to the product humidity.


Assuntos
Acroleína/análogos & derivados , Antibacterianos/química , Reagentes de Ligações Cruzadas/química , Embalagem de Alimentos , Gliadina/química , Triticum/química , Ácido Acético , Acroleína/química , Difusão , Etanol , Umidade , Concentração de Íons de Hidrogênio , Cinética , Metanol , Água
7.
Food Chem ; 424: 136407, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37224636

RESUMO

Kafirin, the sorghum grain storage protein presents lower digestibility compared to its cereals counterparts. Germination has been proposed as an adequate bioprocessing method to improve seed protein digestibility. Here, germination was rationalized so as to evenly sample germinated seeds and the dynamic changes of the proteome and several biochemical markers was connected for the first time with the in vitro protein digestibility of germinated seeds. Free sulfhydryl groups increased during germination and in vitro protein digestibility enhanced. The dynamic in abundance of several enzymes out of which 3 cysteine proteases were found to coincide with appearance of aqueous soluble peptides derived from kafirin at boot time of their degradation. The study provides deep information about the molecular events occurring during sorghum seed germination and reveals potential biomarkers of the kafirin proteolysis. It points a way to improve sorghum nutritional value through controlled germination.


Assuntos
Grão Comestível , Sorghum , Proteínas de Plantas/metabolismo , Sorghum/química , Germinação , Sementes/metabolismo , Grão Comestível/química , Proteômica
8.
Food Chem ; 381: 132254, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35124496

RESUMO

This study provides a detailed characterisation of a leaf protein concentrate (LPC) extracted from Cichorium endivia leaves using a pilot scale process. This concentrate contains 74.1% protein and is mainly composed of Ribulose-1,5-BISphosphate Carboxylase/Oxygenase (RuBisCO). We show that the experimentally determined extinction coefficient (around 5.0 cm-1 g-1 L depending on the pH) and refractive index increment (between 0.27 and 0.39 mL g-1) are higher than the predicted ones (about 1.6 cm-1 g-1 L and 0.19 mL g-1, respectively). In addition, the UV-visible absorption spectra show a maximum at 258 nm. These data suggest the presence of non-protein UV-absorbing species. Chromatographic separation of the concentrate components in denaturing conditions suggests that RuBisCO SC may be covalently bounded to few phenolic compounds. Besides, the solubility of LPC proteins is higher than 90% above pH 6. Such high solubility could make LPC a good candidate as a functional food ingredient.


Assuntos
Folhas de Planta , Ribulose-Bifosfato Carboxilase , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Solubilidade
9.
J Phys Condens Matter ; 33(14)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33494081

RESUMO

We investigate the structure of gluten polymer-like gels in a binary mixture of water/ethanol, 50/50 v/v, a good solvent for gluten proteins. Gluten comprises two main families of proteins, monomeric gliadins and polymer glutenins. In the semi-dilute regime, scattering experiments highlight two classes of behavior, akin to standard polymer solution and polymer gel, depending on the protein composition. We demonstrate that these two classes are encoded in the structural features of the proteins in very dilute solution, and are correlated with the presence of proteins assemblies of typical size tens of nanometers. The assemblies only exist when the protein mixture is sufficiently enriched in glutenins. They are found directly associated to the presence in the gel of domains enriched in non-exchangeable H-bonds and of size comparable to that of the protein assemblies. The domains are probed in neutron scattering experiments thanks to their unique contrast. We show that the sample visco-elasticity is also directly correlated to the quantity of domains enriched in H-bonds, showing the key role of H-bonds in ruling the visco-elasticity of polymer gluten gels.


Assuntos
Glutens , Polímeros , Géis/química , Gliadina/química , Glutens/química , Polímeros/química , Proteínas , Viscosidade
10.
Food Res Int ; 149: 110663, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600665

RESUMO

Sorghum is a potential substitute for corn/wheat in cereal-based extruded products. Despite agronomic advantages and its rich diversity of phenolic compounds, sorghum kafirins group together and form complex with tannins, leading to a low digestibility. Phenolic content/profile by UPLC-ESI-QTOF-MSE and kafirins polymerization by SE-HPLC were evaluated in wholemeal sorghum extrudates; tannin-rich (#SC319) and tannin-free (#BRS330) genotypes with/without turmeric powder. Total phenolic, proantocyanidin and flavonoid contents were strongly correlated with antioxidant capacity (r > 0.9, p < 0.05). Extrusion increased free (+60%) and decreased bound phenolics (-40%) in #SC319, but reduced both (-40%; -90%, respectively) in #BRS330, which presented lower abundance after extrusion. Turmeric addition did not significantly impact antioxidant activity, phenolic content and profile and kafirins profile. Tannins presence/absence impacted phenolic profiles and polymerization of kafirins which appears related to the thermoplastic process. The extrusion improved proteins solubility and can positively enhance their digestibility (phenolic compounds-proteins interactions), making more accessible to proteolysis in sorghum extrudates.


Assuntos
Sorghum , Curcuma , Grão Comestível/química , Fenóis/análise , Taninos
11.
Foods ; 9(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217983

RESUMO

Grain protein content constitutes a key quality trait for durum wheat end-products and may also impact grain protein composition. A total of sixteen durum wheat cultivars were analyzed in a field trial during two seasons at two nitrogen (N) levels to evaluate whether and to what extent the variation in total grain N was associated with variation in the quantity of the various protein fractions and grain quality parameters. Genotypic variation in grain N content correlated with the variation in the content of all three protein fractions, although the strength of the correlation with gliadin and albumin-globulin was higher than that with glutenins. Genotypic variation in gliadin and glutenin content was more tightly correlated with the variation in the sulfur (S)-rich protein groups than with the S-poor protein groups and subunits. The variation in the percentage of unextractable polymeric proteins (UPP%) among genotypes was independent of their glutenin allelic composition. The significant genotypic differences in UPP% and in the ratios between protein groups and subunits were not influenced by the corresponding variation in grain N content. The final grain N content can only account for part of the variation in quality parameters and in the partitioning of total grain N between protein fractions since genotypic differences other than grain N content also contribute to these variations.

12.
Biomacromolecules ; 9(2): 664-71, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18163577

RESUMO

Mechanical properties of gluten-based biomaterials, such as break stress, were known to be influenced by temperature and shear stresses applied during processing. It is well documented in literature that these processing parameters promoted wheat gluten protein aggregation. Exchange between disulfide bonds and thiol groups oxidation are the postulated mechanisms that lead to gluten protein solubility loss in sodium dodecyl sulfate buffers. Both nucleophilic and radical reactions were postulated to act during gluten aggregation. To graft molecules on gluten, a study was carried out to explore the reactivity of its thiol and disulfide groups during thermomechanical mixing. A range of reactants able to react via radical or nucleophilic pathways with thiol groups were synthesized. Reactivity between gluten and functions was quantified by gluten solubility measurements. This investigation and literature observations allowed proposal of a general gluten aggregation mechanism during mixing.


Assuntos
Química Agrícola/métodos , Glutens/química , Proteínas de Plantas/química , Enxofre/química , Triticum/química , Fenômenos Biomecânicos/métodos
13.
J Chromatogr A ; 1213(2): 181-8, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18992896

RESUMO

Natural and synthetic poly(cis-1,4-isoprene) were characterized by size-exclusion chromatography coupled with an online multi-angle light scattering detector (SEC-MALS). Unlike synthetic poly(cis-1,4-isoprene) (SR), natural rubber (NR) samples showed anomalous elution profiles. The beginning of elution was very similar to SR but, after a certain elution volume, the molar masses of the eluting macromolecules increased with elution volume instead of continuing to decrease, which resulted in an upturn curve profile. Adding tetrabutylammonium bromide (TBABr) to THF (solvent and mobile phase) removed this phenomenon. In addition, using different concentrations of TBABr showed that TBABr had two simultaneous actions. TBABr reduced the abnormal elution profiles and the quantity of aggregates (insoluble part or gel). These results mean that the main phenomenon involved in abnormal elution was delayed entities adsorbing on the column packing. Their delayed elution was responsible for the artificial increase in molar masses, especially at high elution volumes. The results obtained suggest that these entities are very compact and have a sphere-like structure.


Assuntos
Cromatografia em Gel/métodos , Borracha/química , Hemiterpenos/isolamento & purificação , Látex/isolamento & purificação , Luz , Substâncias Macromoleculares/isolamento & purificação , Compostos de Amônio Quaternário/química , Borracha/isolamento & purificação , Espalhamento de Radiação , Solventes/química
14.
Food Chem ; 240: 189-195, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28946261

RESUMO

Pasta cooking quality is well known to be related to semolina protein content and composition, however impact of the unextractable polymeric protein content (%UPP) remains disputed. In this work different semolina samples, of variable protein contents (10.5-14.2%) and %UPP (20.2-46.3%) are studied. The changes in %UPP induced by the successive pasta processing steps (mixing, extrusion, drying) but also those occurring during resting periods at 35°C, applied in-between them, were investigated. Effect of a resting period was moderate after mixing, but pronounced after extrusion. Resting of extruded pasta at 35°C significantly increased %UPP, which can even grow beyond that of the semolina. No relationship was found between pasta viscoelastic index (VI) and semolina %UPP or protein content. However, cooked pasta VI was found related to the calculated %UPP of rested fresh pasta.


Assuntos
Glutens/química , Triticum , Dessecação , Farinha , Polímeros
15.
Sci Rep ; 8(1): 14441, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30262869

RESUMO

During wheat seeds development, storage proteins are synthetized and subsequently form dense protein phases, also called Protein Bodies (PBs). The mechanisms of PBs formation and the supramolecular assembly of storage proteins in PBs remain unclear. In particular, there is an apparent contradiction between the low solubility in water of storage proteins and their high local dynamics in dense PBs. Here, we probe the interplay between short-range attraction and long-range repulsion of a wheat gliadin isolate by investigating the dynamics of liquid-liquid phase separation after temperature quench. We do so using time-resolved small angle light scattering, phase contrast microscopy and rheology. We show that gliadins undergo liquid-liquid phase separation through Nucleation and Growth or Spinodal Decomposition depending on the quench depth. They assemble into dense phases but remain in a liquid-like state over an extended range of temperatures and concentrations. The analysis of phase separation kinetics reveals that the attraction strength of gliadins is in the same order of magnitude as other proteins. We discuss the respective role of competing interactions, protein intrinsic disorder, hydration and polydispersity in promoting local dynamics and providing this liquid-like behavior despite attractive forces.


Assuntos
Gliadina/química , Gliadina/isolamento & purificação , Sementes/química , Triticum/química
16.
Front Plant Sci ; 8: 557, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28450877

RESUMO

Major nutritional and agronomical issues relating to maize (Zea mays) grains depend on the vitreousness/hardness of its endosperm. To identify the corresponding molecular and cellular mechanisms, most studies have been conducted on opaque/floury mutants, and recently on Quality Protein Maize, a reversion of an opaque2 mutation by modifier genes. These mutant lines are far from conventional maize crops. Therefore, a dent and a flint inbred line were chosen for analysis of the transcriptome, amino acid, and sugar metabolites of developing central and peripheral endosperm that is, the forthcoming floury and vitreous regions of mature seeds, respectively. The results suggested that the formation of endosperm vitreousness is clearly associated with significant differences in the responses of the endosperm to hypoxia and endoplasmic reticulum stress. This occurs through a coordinated regulation of energy metabolism and storage protein (i.e., zein) biosynthesis during the grain-filling period. Indeed, genes involved in the glycolysis and tricarboxylic acid cycle are up-regulated in the periphery, while genes involved in alanine, sorbitol, and fermentative metabolisms are up-regulated in the endosperm center. This spatial metabolic regulation allows the production of ATP needed for the significant zein synthesis that occurs at the endosperm periphery; this finding agrees with the zein-decreasing gradient previously observed from the sub-aleurone layer to the endosperm center. The massive synthesis of proteins transiting through endoplasmic reticulum elicits the unfolded protein responses, as indicated by the splicing of bZip60 transcription factor. This splicing is relatively higher at the center of the endosperm than at its periphery. The biological responses associated with this developmental stress, which control the starch/protein balance, leading ultimately to the formation of the vitreous and floury regions of mature endosperm, are discussed.

17.
J Agric Food Chem ; 53(10): 3943-9, 2005 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-15884821

RESUMO

Wheat gluten structure was modified in different ways: Disulfide bonds were reduced by sulfitolysis, or protein chains were enzymatically hydrolyzed at three different degrees of proteolysis. A kinetic study of the thermal reactivity of the modified glutens showed that gluten aggregation kinetic was slowed in consequence to the shift of gluten size distribution toward smaller proteins. In contrary to sulfitolysis, proteolysis also affected the gluten reactivity potential because of the formation of numerous nonreactive species. Moreover, the thermally induced browning reaction was greatly enhanced by proteolysis, which increased the amount of free amine residues, substrates of the Maillard reaction. On the contrary, a whitening effect was observed for reduced gluten with bisulfite. Proteolysis was also found to decrease plasticized gluten viscosity, to increase gluten-based materials water solubility, and to enhance gluten adhesiveness properties but to reduce its mechanical performance. Sulfitolysis was considered as a possible way of extending gluten processability by extrusion or injection molding, whereas proteolysis was found to confer enhanced gluten stickiness that suggests new potential end uses of gluten in the pressure sensitive adhesives domain.


Assuntos
Glutens/química , Temperatura Alta , Triticum/química , Fenômenos Químicos , Físico-Química , Glutens/metabolismo , Hidrólise , Cinética , Reação de Maillard , Peptídeo Hidrolases/metabolismo , Solubilidade , Sulfitos/química , Viscosidade
18.
J Phys Chem B ; 119(17): 5412-21, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25839358

RESUMO

In this Article, we investigated the interaction properties of wheat gliadins, properties that are at the basis of their functionality in wheat grain and in food matrixes. We established the equation of state of our isolate by osmotic compression and characterized the concentration-induced structural transitions, from the secondary structure of proteins to the rheological properties. We evidenced three thermodynamical regimes corresponding to several structuring regimes. First, for Φ < 0.03, gliadins behave as repulsive colloids, with a positive second virial coefficient, arising presumably from their surface charge density and/or their steric repulsion. No intermolecular interaction was detected by FT-IR, suggesting that proteins form a stable dispersion. In the second regime, the system becomes more easily compressible, i.e., less repulsive and/or more attractive. It is associated with the disappearance of ß-sheet intramolecular structures of the proteins in favor of random coils/α-helix and intermolecular ß-sheet interactions. This coincides with the appearance of elasticity and the increase of the apparent viscosity. Finally, in the last regime, for Φ > 0.16, FT-IR spectra show that proteins are strongly interacting via intermolecular interactions. A correlation peak develops in SAXS, revealing a global order in the dispersion. Interestingly, the osmotic pressure applied to extract the solvent is higher than expected from a hard-sphere-like protein and we highlighted a liquid-like state at very high concentration (>450 g L(-1)) which is in contrast with most proteins that form gel or glass at such concentration. In the discussion, we questioned the existence of supramolecular assemblies and the role of the solvation that would lead to this specific behavior.


Assuntos
Gliadina/química , Gliadina/metabolismo , Osmose , Triticum/química , Anisotropia , Ligação Proteica , Estrutura Secundária de Proteína , Termodinâmica
19.
J Agric Food Chem ; 63(13): 3551-8, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25794198

RESUMO

Content and composition of maize endosperm lipids and their partition in the floury and vitreous regions were determined for a set of inbred lines. Neutral lipids, i.e., triglycerides and free fatty acids, accounted for more than 80% of endosperm lipids and are almost 2 times higher in the floury than in the vitreous regions. The composition of endosperm lipids, including their fatty acid unsaturation levels, as well as their distribution may be related to metabolic specificities of the floury and vitreous regions in carbon and nitrogen storage and to the management of stress responses during endosperm cell development. Remarkably, the highest contents of starch lipids were observed systematically within the vitreous endosperm. These high amounts of starch lipids were mainly due to lysophosphatidylcholine and were tightly linked to the highest amylose content. Consequently, the formation of amylose-lysophosphatidylcholine complexes has to be considered as an outstanding mechanism affecting endosperm vitreousness.


Assuntos
Amilose/análise , Endosperma/química , Lipídeos/análise , Lipídeos/química , Amido/análise , Zea mays/química , Amilose/metabolismo , Carbono/metabolismo , Endosperma/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/química , Ácidos Graxos não Esterificados/análise , Lisofosfatidilcolinas/metabolismo , Nitrogênio/metabolismo , Amido/química
20.
J Agric Food Chem ; 50(21): 5947-54, 2002 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-12358464

RESUMO

Size exclusion high-performance liquid chromatography analysis was carried out on wheat gluten-glycerol blends subjected to different heat treatments. The elution profiles were analyzed in order to follow the solubility loss of protein fractions with specific molecular size. Owing to the known biochemical changes involved during the heat denaturation of gluten, a mechanistic mathematical model was developed, which divided the protein denaturation into two distinct reaction steps: (i) reversible change in protein conformation and (ii) protein precipitation through disulfide bonding between initially SDS-soluble and SDS-insoluble reaction partners. Activation energies of gluten unfolding, refolding, and precipitation were calculated with the Arrhenius law to 53.9 kJ x mol(-1), 29.5 kJ x mol(-1), and 172 kJ x mol(-1), respectively. The rate of protein solubility loss decreased as the cross-linking reaction proceeded, which may be attributed to the formation of a three-dimensional network progressively hindering the reaction. The enhanced susceptibility to aggregation of large molecules was assigned to a risen reaction probability due to their higher number of cysteine residues and to the increased percentage of unfolded and thereby activated proteins as complete protein refolding seemed to be an anticooperative process.


Assuntos
Glutens/química , Temperatura Alta , Polímeros/química , Triticum/química , Precipitação Química , Cromatografia Líquida de Alta Pressão , Simulação por Computador , Dissulfetos/química , Cinética , Matemática , Modelos Químicos , Peso Molecular , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Solubilidade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA