Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Am Chem Soc ; 146(19): 13113-13125, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700843

RESUMO

Defect engineering in metal-organic frameworks (MOFs) has gained worldwide research traction, as it offers tools to tune the properties of MOFs. Herein, we report a novel 2-fold interpenetrated Bi-based MOF made of a tritopic flexible organic linker, followed by missing-linker defect engineering. This procedure creates a gradually augmented micro- and mesoporosity in the parent (originally nonporous) network. The resulting MOFs can tolerate a remarkable extent of linker vacancy (with absence of up to 60% of linkers per Bi node) created by altering the crystal-growth rate as a function of synthesis temperature and duration. Owing to the enhanced porosity and availability of the uncoordinated Lewis acidic Bi sites, the defect-engineered MOFs manifested improved surface areas, augmented CO2 and water vapor uptake, and catalytic activity. Parallel to this, the impact of defect engineering on the optoelectronic properties of these MOFs has also been studied, offering avenues for new applications.

2.
Biomacromolecules ; 25(3): 1448-1467, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38412382

RESUMO

Despite all recent progresses in nerve tissue engineering, critical-sized nerve defects are still extremely challenging to repair. Therefore, this study targets the bridging of critical nerve defects and promoting an oriented neuronal outgrowth by engineering innovative nerve guidance conduits (NGCs) synergistically possessing exclusive topographical, chemical, and mechanical cues. To do so, a mechanically adequate mixture of polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA) was first carefully selected as base material to electrospin nanofibrous NGCs simulating the extracellular matrix. The electrospinning process was performed using a newly designed 2-pole air gap collector that leads to a one-step deposition of seamless NGCs having a bilayered architecture with an inner wall composed of highly aligned fibers and an outer wall consisting of randomly oriented fibers. This architecture is envisaged to afford guidance cues for the extension of long neurites on the underlying inner fiber alignment and to concurrently provide a sufficient nutrient supply through the pores of the outer random fibers. The surface chemistry of the NGCs was then modified making use of a hollow cathode discharge (HCD) plasma reactor purposely designed to allow an effective penetration of the reactive species into the NGCs to eventually treat their inner wall. X-ray photoelectron spectroscopy (XPS) results have indeed revealed a successful O2 plasma modification of the inner wall that exhibited a significantly increased oxygen content (24 → 28%), which led to an enhanced surface wettability. The treatment increased the surface nanoroughness of the fibers forming the NGCs as a result of an etching effect. This effect reduced the ultimate tensile strength of the NGCs while preserving their high flexibility. Finally, pheochromocytoma (PC12) cells were cultured on the NGCs to monitor their ability to extend neurites which is the base of a good nerve regeneration. In addition to remarkably improved cell adhesion and proliferation on the plasma-treated NGCs, an outstanding neural differentiation occurred. In fact, PC12 cells seeded on the treated samples extended numerous long neurites eventually establishing a neural network-like morphology with an overall neurite direction following the alignment of the underlying fibers. Overall, PCL/PLGA NGCs electrospun using the 2-pole air gap collector and O2 plasma-treated using an HCD reactor are promising candidates toward a full repair of critical nerve damage.


Assuntos
Neuritos , Alicerces Teciduais , Ratos , Animais , Alicerces Teciduais/química , Neuritos/fisiologia , Engenharia Tecidual/métodos , Regeneração Nervosa , Crescimento Neuronal
3.
Angew Chem Int Ed Engl ; 62(47): e202313836, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37806967

RESUMO

Electrochemical two-electron water oxidation (2e WOR) is gaining surging research traction for sustainable hydrogen peroxide production. However, the strong oxidizing environment and thermodynamically competitive side-reaction (4e WOR) posit as thresholds for the 2e WOR. We herein report a custom-crafted covalent triazine network possessing strong oxidizing properties as a proof-of-concept metal-free functional organic network electrocatalyst for catalyzing 2e WOR. As the first-of-its-kind, the material shows a maximum of 89.9 % Faradaic Efficiency and 1428 µmol/h/cm2 H2 O2 production rate at 3.0 V bias potential (vs reversible hydrogen electrode, RHE), which are either better or comparable to the state-of-the-art electrocatalysts. We have experimentally confirmed a stepwise 2e WOR mechanism which was further computationally endorsed by density functional theory studies.

4.
Prog Polym Sci ; 118: 101410, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33967350

RESUMO

Coronavirus disease 2019 (COVID-19) is largely threatening global public health, social stability, and economy. Efforts of the scientific community are turning to this global crisis and should present future preventative measures. With recent trends in polymer science that use plasma to activate and enhance the functionalities of polymer surfaces by surface etching, surface grafting, coating and activation combined with recent advances in understanding polymer-virus interactions at the nanoscale, it is promising to employ advanced plasma processing for smart antiviral applications. This trend article highlights the innovative and emerging directions and approaches in plasma-based surface engineering to create antiviral polymers. After introducing the unique features of plasma processing of polymers, novel plasma strategies that can be applied to engineer polymers with antiviral properties are presented and critically evaluated. The challenges and future perspectives of exploiting the unique plasma-specific effects to engineer smart polymers with virus-capture, virus-detection, virus-repelling, and/or virus-inactivation functionalities for biomedical applications are analysed and discussed.

5.
J Am Chem Soc ; 142(6): 3174-3183, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31971786

RESUMO

The stability of metal-organic frameworks (MOFs) typically decreases with an increasing number of defects, limiting the number of defects that can be created and limiting catalytic and other applications. Herein, we use a hemilabile (Hl) linker to create up to a maximum of six defects per cluster in UiO-66. We synthesized hemilabile UiO-66 (Hl-UiO-66) using benzene dicarboxylate (BDC) as linker and 4-sulfonatobenzoate (PSBA) as the hemilabile linker. The PSBA acts not only as a modulator to create defects but also as a coligand that enhances the stability of the resulting defective framework. Furthermore, upon a postsynthetic treatment in H2SO4, the average number of defects increases to the optimum of six missing BDC linkers per cluster (three per formula unit), leaving the Zr-nodes on average sixfold coordinated. Remarkably, the thermal stability of the materials further increases upon this treatment. Periodic density functional theory calculations confirm that the hemilabile ligands strengthen this highly defective structure by several stabilizing interactions. Finally, the catalytic activity of the obtained materials is evaluated in the acid-catalyzed isomerization of α-pinene oxide. This reaction is particularly sensitive to the Brønsted or Lewis acid sites in the catalyst. In comparison to the pristine UiO-66, which mainly possesses Brønsted acid sites, the Hl-UiO-66 and the postsynthetically treated Hl-UiO-66 structures exhibited a higher Lewis acidity and an enhanced activity and selectivity. This is further explored by CD3CN spectroscopic sorption experiments. We have shown that by tuning the number of defects in UiO-66 using PSBA as the hemilabile linker, one can achieve highly defective and stable MOFs and easily control the Brønsted to Lewis acid ratio in the materials and thus their catalytic activity and selectivity.

6.
Chemistry ; 26(67): 15596-15604, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32519784

RESUMO

The challenge of measuring fast moving or small scale samples is based on the absence of contact between sample and sensor. Grafting lanthanides onto hybrid materials arises as one of the most promising accurate techniques to obtain noninvasive thermometers. In this work, a novel bipyridine based porous organic polymer (bpyDAT POP) was investigated as temperature sensor after grafting with Eu(acac)3 and Tb(acac)3 complexes. The bpyDAT POP successfully showed temperature-dependent behavior in the 10-310 K range, proving the potential of amorphous, porous organic frameworks. We observed unique temperature dependent behavior. More intriguingly, instead of the standard observed change in emission as a result of a change in temperature for both Eu3+ and Tb3+ , the emission spectrum of Tb3+ remained constant. This work provides framework- and energy-based explanations for the observed phenomenon. The conjugation in the bpyDAT POP framework is interrupted, creating energetically isolated Tb3+ environments. Energy transfer from Tb3+ to Eu3+ is therefore absent, nor energy back transfer from Tb3+ to bpyDAT POP ligand (i.e. no thermal quenching) is detected.

7.
J Biomed Mater Res A ; 112(2): 210-230, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37706337

RESUMO

Bone marrow-derived mesenchymal stromal cells (BMSCs) are extensively being utilized for cartilage regeneration owing to their excellent differentiation potential and availability. However, controlled differentiation of BMSCs towards cartilaginous phenotypes to heal full-thickness cartilage defects remains challenging. This study investigates how different surface properties induced by either coating deposition or biomolecules immobilization onto nanofibers (NFs) could affect BMSCs chondro-inductive behavior. Accordingly, electrospun poly(ε-caprolactone) (PCL) NFs were exposed to two surface modification strategies based on medium-pressure plasma technology. The first strategy is plasma polymerization, in which cyclopropylamine (CPA) or acrylic acid (AcAc) monomers were plasma polymerized to obtain amine- or carboxylic acid-rich NFs, respectively. The second strategy uses a combination of CPA plasma polymerization and a post-chemical technique to immobilize chondroitin sulfate (CS) onto the NFs. These modifications could affect surface roughness, hydrophilicity, and chemical composition while preserving the NFs' nano-morphology. The results of long-term BMSCs culture in both basic and chondrogenic media proved that the surface modifications modulated BMSCs chondrogenic differentiation. Indeed, the incorporation of polar groups by different modification strategies had a positive impact on the cell proliferation rate, production of the glycosaminoglycan matrix, and expression of extracellular matrix proteins (collagen I and collagen II). The chondro-inductive behavior of the samples was highly dependent on the nature of the introduced polar functional groups. Among all samples, carboxylic acid-rich NFs promoted chondrogenesis by higher expression of aggrecan, Sox9, and collagen II with downregulation of hypertrophic markers. Hence, this approach showed an intrinsic potential to have a non-hypertrophic chondrogenic cell phenotype.


Assuntos
Células-Tronco Mesenquimais , Nanofibras , Humanos , Condrogênese , Diferenciação Celular , Colágeno/química , Ácidos Carboxílicos , Células Cultivadas
8.
J Mater Sci Mater Med ; 24(2): 469-78, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23124527

RESUMO

In this work, medium pressure plasma treatment of polylactic acid (PLA) is investigated. PLA is a biocompatible aliphatic polymer, which can be used for bone fixation devices and tissue engineering scaffolds. Due to inadequate surface properties, cell adhesion and proliferation are far less than optimal and a surface modification is required for most biomedical applications. By using a dielectric barrier discharge (DBD) operating at medium pressure in different atmospheres, the surface properties of a PLA foil are modified. After plasma treatment, water contact angle measurements showed an increased hydrophilic character of the foil surface. X-ray photoelectron spectroscopy (XPS) revealed an increased oxygen content. Cell culture tests showed that plasma modification of PLA films increased the initial cell attachment both quantitatively and qualitatively. After 1 day, cells on plasma-treated PLA showed a superior cell morphology in comparison with unmodified PLA samples. However, after 7 days of culture, no significant differences were observed between untreated and plasma-modified PLA samples. While plasma treatment improves the initial cell attachment, it does not seem to influence cell proliferation. It has also been observed that the difference between the 3 discharge gases is negligible when looking at the improved cell-material interactions. From economical point of view, plasma treatments in air are thus the best choice.


Assuntos
Fibroblastos/fisiologia , Ácido Láctico/química , Gases em Plasma , Polímeros/química , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ácido Láctico/síntese química , Ácido Láctico/farmacologia , Teste de Materiais , Modelos Biológicos , Espectroscopia Fotoeletrônica , Poliésteres , Polímeros/síntese química , Polímeros/farmacologia , Propriedades de Superfície/efeitos dos fármacos , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais/química
9.
Trends Biotechnol ; 41(1): 63-76, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863949

RESUMO

Antibacterial coatings are regarded as a necessary tool to prevent implant-related infections. Substrate-independent and widely applicable coating techniques are gaining significant interest to synthesize different types of antibacterial films, which can be relevant from a fundamental and application-oriented perspective. Plasma polymer- and polydopamine-based antibacterial coatings represent the most widely studied and versatile approaches among these coating techniques. Both single- and dual-functional antibacterial coatings can be fabricated with these approaches and a variety of dual-functional antibacterial coating strategies can still be explored in future work. These coatings can potentially be used for a wide range of different implants (material, shape, and size). However, for most implants, significantly more fundamental knowledge needs to be gained before these coatings can find real-life use.


Assuntos
Antibacterianos , Materiais Revestidos Biocompatíveis , Antibacterianos/farmacologia , Próteses e Implantes
10.
J Hazard Mater ; 451: 131100, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893595

RESUMO

Plasma-catalysis has been recognized as a promising method to decompose hazardous volatile organic compounds (VOCs) since many years ago. To understand the fundamental mechanisms of VOCs decomposition by plasma-catalysis systems, both experimental and modeling studies have been extensively carried out. However, literature on summarized modeling methodologies is still scarce. In this short review, we therefore present a comprehensive overview of modeling methodologies ranging from microscopic to macroscopic modeling in plasma-catalysis for VOCs decomposition. The modeling methods of VOCs decomposition by plasma and plasma-catalysis are classified and summarized. The roles of plasma and plasma-catalyst interactions in VOCs decomposition are also critically examined. Taking the current advances in understanding the decomposition mechanisms of VOCs into account, we finally provide our perspectives for future research directions. This short review aims to stimulate the further development of plasma-catalysis for VOCs decomposition in both fundamental studies and practical applications with advanced modeling methods.

11.
Polymers (Basel) ; 15(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37514368

RESUMO

Polymeric surfaces have been increasingly plasma-activated to adopt adequate chemistries, enabling their use in different applications. An unavoidable surface oxygen insertion upon exposure to non-oxygen-containing plasmas was always observed and mainly attributed to in-plasma oxidation stemming from O2 impurities in plasma reactors. Therefore, this work investigates exclusive in-plasma oxidation processes occurring on polyethylene surfaces by purposely admixing different O2 concentrations to medium-pressure Ar and N2 dielectric barrier discharges (base pressure: 10-7 kPa). Hence, distinctive optical emission spectroscopy and in-situ X-ray photoelectron spectroscopy (XPS) data were carefully correlated. Pure N2 discharge triggered an unprecedented surface incorporation of large nitrogen (29%) and low oxygen (3%) amounts. A steep rise in the O-content (10%) at the expense of nitrogen (15%) was detected upon the addition of 6.2 × 10-3% of O2 to the feed gas. When the added O2 exceeded 1%, the N content was completely quenched. Around 8% of surface oxygen was detected in Ar plasma due to high-energy Ar metastables creating more surface radicals that reacted with O2 impurities. When adding only 6.2 × 10-3% of O2 to Ar, the surface O content considerably increased to 12%. Overall, in-plasma oxidation caused by O2 impurities can strikingly change the surface chemistry of N2 and Ar plasma-treated polymers.

12.
Nanomaterials (Basel) ; 13(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570520

RESUMO

Cu (10 wt%) materials on silica nanotubes were prepared via two different synthetic approaches, co-synthesis and wetness impregnation on preformed SiO2 nanotubes, both as dried or calcined materials, with Cu(NO3)2.5H2O as a material precursor. The obtained silica and the Cu samples, after calcination at 550 °C for 5 h, were characterized by several techniques, such as TEM, N2 physisorption, XRD, Raman, H2-TPR and XPS, and tested for toluene oxidation in the 20-450 °C temperature range. A reference sample, Cu(10 wt%) over commercial silica, was also prepared. The copper-based silica nanotubes exhibited the best performances with respect to toluene oxidation. The Cu-based catalyst using dried silica nanotubes has the lowest T50 (306 °C), the temperature required for 50% toluene conversion, compared with a T50 of 345 °C obtained for the reference catalyst. The excellent catalytic properties of this catalyst were ascribed to the presence of easy copper (II) species finely dispersed (crystallite size of 13 nm) on the surface of silica nanotubes. The present data underlined the impact of the synthetic method on the catalyst properties and oxidation activity.

13.
Biomater Adv ; 149: 213361, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965401

RESUMO

In this study melt electro written (MEW) scaffolds of poly(ε-caprolactone) PCL are decorated with anti-inflammatory yeast-derived peptide for skin wound healing. Initially, 13 different yeast-derived peptides were screened and analyzed using both in vitro and in vivo assays. The MEW scaffolds are functionalized with the selected peptide VLSTSFPPW (VW-9) with the highest activity in reducing pro-inflammatory cytokines and stimulating fibroblast proliferation, migration, and collagen production. The peptide was conjugated to the MEW scaffolds using carbodiimide (CDI) and thiol chemistry, with and without plasma treatment, as well as by directly mixing the peptide with the polymer before printing. The MEW scaffolds modified using CDI and thiol chemistry with plasma treatment showed improved fibroblast and macrophage penetration and adhesion, as well as increased cell proliferation and superior anti-inflammatory properties, compared to the other groups. When applied to full-thickness excisional wounds in rats, the peptide-modified MEW scaffold significantly enhanced the healing process compared to controls (p < 0.05). This study provides proof of concept for using yeast-derived peptides to functionalize biomaterials for skin wound healing.


Assuntos
Saccharomyces cerevisiae , Alicerces Teciduais , Ratos , Animais , Alicerces Teciduais/química , Cicatrização , Peptídeos/farmacologia
14.
ACS Appl Mater Interfaces ; 15(29): 35092-35106, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37462114

RESUMO

Covalent organic frameworks (COFs) are emerging as a new class of photoactive organic semiconductors, which possess crystalline ordered structures and high surface areas. COFs can be tailor-made toward specific (photocatalytic) applications, and the size and position of their band gaps can be tuned by the choice of building blocks and linkages. However, many types of building blocks are still unexplored as photocatalytic moieties and the scope of reactions photocatalyzed by COFs remains quite limited. In this work, we report the synthesis and application of two bipyridine- or phenylpyridine-based COFs: TpBpyCOF and TpPpyCOF. Due to their good photocatalytic properties, both materials were applied as metal-free photocatalysts for the tandem aerobic oxidation/Povarov cyclization and α-oxidation of N-aryl glycine derivatives, with the bipyridine-based TpBpyCOF exhibiting the highest activity. By expanding the range of reactions that can be photocatalyzed by COFs, this work paves the way toward the more widespread application of COFs as metal-free heterogeneous photocatalysts as a convenient alternative for commonly used homogeneous (metal-based) photocatalysts.

15.
Polymers (Basel) ; 15(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36616422

RESUMO

Composite biopolymer/conducting polymer scaffolds, such as polylactic acid (PLA)/ polyaniline (PAni) nanofibers, have emerged as popular alternative scaffolds in the electrical-sensitive nerve tissue engineering (TE). Although mimicking the extracellular matrix geometry, such scaffolds are highly hydrophobic and usually present an inhomogeneous morphology with massive beads that impede nerve cell-material interactions. Therefore, the present study launches an exclusive combinatorial strategy merging successive pre- and post-electrospinning plasma treatments to cope with these issues. Firstly, an atmospheric pressure plasma jet (APPJ) treatment was applied on PLA and PLA/PAni solutions prior to electrospinning, enhancing their viscosity and conductivity. These liquid property changes largely eliminated the beaded structures on the nanofibers, leading to uniform and nicely elongated fibers having average diameters between 170 and 230 nm. After electrospinning, the conceived scaffolds were subjected to a N2 dielectric barrier discharge (DBD) treatment, which significantly increased their surface wettability as illustrated by large decreases in water contact angles for values above 125° to values below 25°. X-ray photoelectron spectroscopy (XPS) analyses revealed that 3.3% of nitrogen was implanted on the nanofibers surface in the form of C-N and N-C=O functionalities upon DBD treatment. Finally, after seeding pheochromocytoma (PC-12) cells on the scaffolds, a greatly enhanced cell adhesion and a more dispersive cell distribution were detected on the DBD-treated samples. Interestingly, when the APPJ treatment was additionally performed, the extension of a high number of long neurites was spotted leading to the formation of a neuronal network between PC-12 cell clusters. In addition, the presence of conducting PAni in the scaffolds further promoted the behavior of PC-12 cells as illustrated by more than a 40% increase in the neurite density without any external electrical stimulation. As such, this work presents a new strategy combining different plasma-assisted biofabrication techniques of conducting nanofibers to create promising scaffolds for electrical-sensitive TE applications.

16.
ACS Appl Mater Interfaces ; 14(3): 4620-4636, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35014795

RESUMO

Plasma polymerization has emerged as an appealing technique for surface modification because of its advantages over a variety of conventional techniques, including ease-of-use and the possibility to modify nearly any substrate. One of the main challenges of plasma polymer-based surface modification, however, is having control over the coating chemistry, as plasma deposition generates a diversity of chemical structures. Therefore, this study presents an alternative plasma-based method for the fabrication of coatings that contain selective functionalities. In a first step, hexamethyldisiloxane (HMDSO) plasma polymerization is performed in a medium-pressure dielectric barrier discharge (DBD) to deposit polydimethylsiloxane (PDMS)-like coatings. In a second step, this coating is exposed to an air plasma in a similar DBD setup to introduce silanol groups on the surface. These groups are used in a third and final step as anchoring points for grafting of (3-aminopropyl)triethoxysilane (APTES) and (3-bromopropyl)trichlorosilane (BrPTCS) to selectively introduce amino or bromo groups, respectively. X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA) measurements indicated that the first two steps were successful. Moreover, the coating could be synthesized on three different surfaces, namely, glass, ultrahigh-molecular-weight polyethylene, and polytetrafluoroethylene, indicating the wide applicability of the developed procedure. Afterward, XPS also proved that the APTES and BrPTCS grafting resulted in the formation of a coating containing primary amines and alkyl bromides, respectively, in combination with an organosilicon matrix containing silanol groups as remaining reactive groups, proving the successful synthesis of selective functional plasma-based coatings. The intermediate air-plasma-activation step was demonstrated to be necessary for successful and stable grafting of the final layer. In conclusion, this study established a general procedure for the development of coatings with selective functionality that can be applied on a wide variety of substrates for, e.g., biosensor applications, biomolecule, or polymer immobilization or for the synthesis of antibacterial coatings.

17.
Biomater Adv ; 143: 213183, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36371971

RESUMO

Despite tissue engineering advances, current nerve guidance conduits (NGCs) are still failing in repairing critical-sized defects. This study aims, therefore, at tackling large nerve gaps (2 cm) by designing NGCs possessing refined physicochemical properties enhancing the activity of Schwann cells (SCs) that support nerve regeneration over long distances. As such, a combinatorial strategy adopting novel plasma-induced surface chemistry and architectural heterogeneity was considered. A mechanically suitable copolymer (Polyactive®) was electrospun to produce nanofibrous NGCs mimicking the extracellular matrix. An innovative seamless double-layered architecture consisting of an inner wall comprised of bundles of aligned fibers with intercalated random fibers and an outer wall fully composed of random fibers was conceived to synergistically provide cell guidance cues and sufficient nutrient inflow. NGCs were subjected to argon plasma treatments using a dielectric barrier discharge (DBD) and a plasma jet (PJ). Surface chemical changes were examined by advanced X-ray photoelectron spectroscopy (XPS) micro-mappings. The DBD homogeneously increased the surface oxygen content from 17 % to 28 % on the inner wall. The PJ created a gradient chemistry throughout the inner wall with an oxygen content gradually increasing from 21 % to 30 %. In vitro studies revealed enhanced primary SC adhesion, elongation and proliferation on plasma-treated NGCs. A cell gradient was observed on the PJ-treated NGCs thus underlining the favorable oxygen gradient in promoting cell chemotaxis. A gradual change from circular to highly elongated SC morphologies mimicking the bands of Büngner was visualized along the gradient. Overall, plasma-treated NGCs are promising candidates paving the way towards critical nerve gap repair.


Assuntos
Regeneração Tecidual Guiada , Regeneração Tecidual Guiada/métodos , Alicerces Teciduais/química , Regeneração Nervosa/fisiologia , Engenharia Tecidual/métodos , Polímeros/química , Oxigênio
18.
ACS Appl Mater Interfaces ; 14(13): 15287-15297, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35322660

RESUMO

Chemoselective reduction of nitroarenes to arylamines is a core technology for the synthesis of numerous chemicals. The technology, however, relies on applying precious noble metal catalysts. We present our findings on the development of robust nanoporous covalent triazine frameworks (CTFs) as metal-free catalysts for the green chemoselective reduction of nitroarenes. The turnover frequency is found to be 43.03 h-1, exceeding activities of the heteroatom-doped carbon nanomaterials by a factor of 30. The X-ray photoelectron spectroscopy and control experiments provide further insights into the nature of active species for prompt catalysis. This report confirms the importance of quaternary 'N' and 'F' atom functionalities to create active hydrogen species via charge delocalization as a critical step in improving the catalytic activity.

19.
RSC Adv ; 12(22): 14246-14259, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35558835

RESUMO

The simultaneous presence of hazardous chemicals and pathogenic microorganisms in wastewater is tremendously endangering the environment and human health. Therefore, developing a mitigation strategy for adequately degrading toxic compounds and inactivating/killing microorganisms is urgently needed to protect ecosystems. In this paper, the synergetic effects of the photocatalytic activity of TiO2 and Cu-TiO2 nanoparticles (NPs) and the oxidation processes of non-thermal atmospheric pressure plasma (NTAPP) were comprehensively investigated for both the inactivation/killing of common water contaminating bacteria (Escherichia coli (E. coli)) and the degradation of direct textile wastewater (DTW). The photocatalytic NPs were synthesized using the hydrothermal method and further characterized employing field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-Vis DRS) and photoluminescence (PL). Results revealed the predominant presence of the typical anatase phase for both the flower-like TiO2 and the multipod-like Cu-TiO2 structures. UV-Vis DRS and PL analyses showed that the addition of Cu dopants reduced the bandgap and increased oxygen defect vacancies of TiO2. The inactivation of E. coli in suspension and degradation of DTW were then examined upon treating the aqueous media with various plasma alone and plasma/NPs conditions (Ar plasma, Ar + O2 plasma and Ar + N2 plasma, Ar plasma + TiO2 NPs and Ar plasma + Cu-TiO2 NPs). Primary and secondary excited species such as OH˙, O, H and N2* generated in plasma during the processes were recognized by in situ optical emission spectrometry (OES) measurements. Several other spectroscopic analyses were further employed to quantify some reactive oxygen species (ROS) such as OH, H2O2 and O3 generated during the processes. Moreover, the changes in the pH and electrical conductivity (EC) of the solutions were also assessed. The inactivation of bacteria was examined by the colony-forming unit (CFU) method after plating the treated suspensions on agar, and the degradation of organic compounds in DTW was further validated by measuring the total organic carbon (TOC) removal efficiency. All results collectively revealed that the combinatorial plasma-photocatalysis strategy involving Cu-TiO2 NPs and argon plasma jet produced higher concentrations of ROS and proved to be a promising one-step wastewater treatment effectively killing microorganisms and degrading toxic organic compounds.

20.
Sci Total Environ ; 828: 154290, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35248631

RESUMO

It is urgent to control the emission of volatile organic compounds (VOCs) due to their harmful effects on the environment and human health. A hybrid system integrating non-thermal-plasma and catalysis is regarded as one of the most promising technologies for VOCs removal due to their high VOCs removal efficiency, product selectivity and energy efficiency. This review systematically documents the main findings and improvements of VOCs removal using plasma-catalysis technology in recent 10 years. To better understand the fundamental relation between different aspects of this research field, this review mainly addresses the catalyst development, key influential factors, generation of by-products and reaction mechanism of VOCs decomposition in the plasma-catalysis process. Also, a comparison of the performance in various VOCs removal processes is provided. Particular emphasis is given to the importance of the selected catalyst and the synergy of plasma and catalyst in the VOCs removal in the hybrid system, which can be used as a reference point for future studies in this field.


Assuntos
Compostos Orgânicos Voláteis , Catálise , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA