Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Biol Chem ; 300(1): 105513, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042483

RESUMO

α1,6-Fucosyltransferase (Fut8) catalyzes the transfer of fucose to the innermost GlcNAc residue of N-glycan to form core fucosylation. Our previous studies showed that lipopolysaccharide (LPS) treatment highly induced neuroinflammation in Fut8 homozygous KO (Fut8-/-) or heterozygous KO (Fut8+/-) mice, compared with the WT (Fut8+/+) mice. To understand the underlying mechanism, we utilized a sensitive inflammation-monitoring mouse system that contains the human interleukin-6 (hIL6) bacterial artificial chromosome transgene modified with luciferase (Luc) reporter cassette. We successfully detected LPS-induced neuroinflammation in the central nervous system by exploiting this bacterial artificial chromosome transgenic monitoring system. Then we examined the effects of l-fucose on neuroinflammation in the Fut8+/- mice. The lectin blot and mass spectrometry analysis showed that l-fucose preadministration increased the core fucosylation levels in the Fut8+/- mice. Notably, exogenous l-fucose attenuated the LPS-induced IL-6 mRNA and Luc mRNA expression in the cerebral tissues, confirmed using the hIL6-Luc bioluminescence imaging system. The activation of microglial cells, which provoke neuroinflammatory responses upon LPS stimulation, was inhibited by l-fucose preadministration. l-Fucose also suppressed the downstream intracellular signaling of IL-6, such as the phosphorylation levels of JAK2 (Janus kinase 2), Akt (protein kinase B), and STAT3 (signal transducer and activator of transcription 3). l-Fucose administration increased gp130 core fucosylation levels and decreased the association of gp130 with the IL-6 receptor in Fut8+/- mice, which was further confirmed in BV-2 cells. These results indicate that l-fucose administration ameliorates the LPS-induced neuroinflammation in the Fut8+/- mice, suggesting that core fucosylation plays a vital role in anti-inflammation and that l-fucose is a potential prophylactic compound against neuroinflammation.


Assuntos
Fucose , Inflamação , Lipopolissacarídeos , Animais , Humanos , Camundongos , Receptor gp130 de Citocina , Fucose/farmacologia , Fucose/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/genética , Lipopolissacarídeos/toxicidade , Doenças Neuroinflamatórias , RNA Mensageiro
2.
Blood ; 138(18): 1691-1704, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34324630

RESUMO

Histone H3 lysine 4 methylation (H3K4Me) is most often associated with chromatin activation, and removing H3K4 methyl groups has been shown to be coincident with gene repression. H3K4Me demethylase KDM1a/LSD1 is a therapeutic target for multiple diseases, including for the potential treatment of ß-globinopathies (sickle cell disease and ß-thalassemia), because it is a component of γ-globin repressor complexes, and LSD1 inactivation leads to robust induction of the fetal globin genes. The effects of LSD1 inhibition in definitive erythropoiesis are not well characterized, so we examined the consequences of conditional inactivation of Lsd1 in adult red blood cells using a new Gata1creERT2 bacterial artificial chromosome transgene. Erythroid-specific loss of Lsd1 activity in mice led to a block in erythroid progenitor differentiation and to the expansion of granulocyte-monocyte progenitor-like cells, converting hematopoietic differentiation potential from an erythroid fate to a myeloid fate. The analogous phenotype was also observed in human hematopoietic stem and progenitor cells, coincident with the induction of myeloid transcription factors (eg, PU.1 and CEBPα). Finally, blocking the activity of the transcription factor PU.1 or RUNX1 at the same time as LSD1 inhibition rescued myeloid lineage conversion to an erythroid phenotype. These data show that LSD1 promotes erythropoiesis by repressing myeloid cell fate in adult erythroid progenitors and that inhibition of the myeloid-differentiation pathway reverses the lineage switch induced by LSD1 inactivation.


Assuntos
Células Eritroides/citologia , Eritropoese , Histona Desmetilases/metabolismo , Células Mieloides/citologia , Animais , Linhagem Celular , Células Cultivadas , Células Eritroides/metabolismo , Deleção de Genes , Histona Desmetilases/genética , Humanos , Camundongos , Células Mieloides/metabolismo
3.
Carcinogenesis ; 43(7): 613-623, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35561328

RESUMO

The transcription factor Nrf2 plays a crucial role in the anti-oxidative stress response, protection of DNA from injury and DNA repair mechanisms. Nrf2 activity reduces cancer initiation, but how Nrf2 affects whole-genome alterations upon carcinogenic stimulus remains unexplored. Although recent genome-wide analysis using next-generation sequencing revealed landscapes of nucleotide mutations and copy number alterations in various human cancers, genomic changes in murine cancer models have not been thoroughly examined. We elucidated the relationship between Nrf2 expression levels and whole exon mutation patterns using an ethyl-carbamate (urethane)-induced lung carcinogenesis model employing Nrf2-deficient and Keap1-kd mice, the latter of which express high levels of Nrf2. Exome analysis demonstrated that single nucleotide and trinucleotide mutation patterns and the Kras mutational signature differed significantly and were dependent on the expression level of Nrf2. The Nrf2-deficient tumors exhibited fewer copy number alterations relative to the Nrf2-wt and Keap1-kd tumors. The observed trend in genomic alterations likely prevented the Nrf2-deficient tumors from progressing into malignancy. For the first time, we present whole-exome sequencing results for chemically-induced lung tumors in the Nrf2 gain or loss of function mouse models. Our results demonstrate that different Nrf2 expression levels lead to distinct gene mutation patterns that underly different oncogenic mechanisms in each tumor genotype.


Assuntos
Neoplasias Pulmonares , Fator 2 Relacionado a NF-E2 , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Modelos Animais de Doenças , Genômica , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Mutação , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Nucleotídeos/efeitos adversos , Nucleotídeos/metabolismo , Uretana
4.
Glycobiology ; 32(9): 778-790, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35713525

RESUMO

Mannosyl phosphorylceramide (MIPC) is a membrane lipid classified as a complex sphingolipid in Saccharomyces cerevisiae. MIPC is synthesized by 2 redundant enzymes, Sur1/Csg1 and Csh1, in the Golgi lumen. MIPC consists of 5 subtypes (A, B', B, C, and D-type) according to the position and number of hydroxyl groups on the ceramide moiety. Sur1 exerts higher impact on synthesis of MIPC-B and MIPC-C than Csh1. In this study, we elucidated the roles played by N-glycans attached to Sur1 and Csh1, and dissected the mechanisms underlying substrate recognition by these 2 enzymes. Sur1 carries an N-glycan on Asn-224, whereas Csh1 has N-glycans on Asn-51 and Asn-247. Although intracellular proteins usually harbor core-type N-glycans, the N-glycan on Asn-51 of Csh1 exhibited a unique mannan-like structure containing a long backbone of mannose. Sur1 N224Q and Csh1 N51Q mutants exhibited a decrease in the activity to synthesize specific MIPC subtypes for each enzyme, suggesting that these N-glycans play a role in substrate recognition through their catalytic domains. Moreover, ectopic insertion of an N-glycosylation consensus sequence (NST) at codon 51 of Sur1 (Sur1-NST51) resulted in an artificial modification with mannan, which markedly decreased protein stability. Our results suggest that the diminished stability of the Sur1-NST51 mutant protein could be attributable to potential structural alterations by the mannan. Collectively, the present study reveals essential luminal domains of Sur1 and Csh1 that dictate substrate specificity and/or the protein stabilities via mannan modification.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Carbamatos , Glicosiltransferases/metabolismo , Mananas/metabolismo , Manosiltransferases/metabolismo , Proteínas de Membrana/química , Mutação , Polissacarídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Genes Cells ; 26(7): 474-484, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33864419

RESUMO

Lymphatic recanalization failure after lymphadenectomy constitutes a major risk of lymphedema in cancer surgery. It has been reported that GATA2, a zinc finger transcription factor, is expressed in lymphatic endothelial cells and is involved in the development of fetal lymphatic vessels. GATA3, another member of the GATA family of transcription factors, is required for the differentiation of lymphoid tissue inducer (LTi) cells and is essential for lymph node formation. However, how GATA2 and GATA3 function in recanalization after the surgical extirpation of lymphatic vessels has not been elucidated. Employing a new model of lymphatic recanalization, we examined the lymphatic reconnection process in Gata2 heterozygous deficient (Gata2+/- ) and Gata3 heterozygous deficient (Gata3+/- ) mice. We found that lymphatic recanalization was significantly impaired in Gata2+/- mice, while Gata3+/- mice rarely showed such abnormalities. Notably, the perturbed lymphatic recanalization in the Gata2+/- mice was partially restored by crossing with the Gata3+/- mice. Our results demonstrate for the first time that GATA2 participates in the regeneration of damaged lymphatic vessels and the unexpected suppressive activity of GATA3 against lymphatic recanalization processes.


Assuntos
Fator de Transcrição GATA2/metabolismo , Excisão de Linfonodo/efeitos adversos , Vasos Linfáticos/metabolismo , Linfedema/metabolismo , Complicações Pós-Operatórias/metabolismo , Animais , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Heterozigoto , Vasos Linfáticos/fisiologia , Linfedema/etiologia , Camundongos , Complicações Pós-Operatórias/etiologia , Regeneração
6.
Genes Cells ; 25(7): 443-449, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32394600

RESUMO

Histamine is a bioactive monoamine that is synthesized by the enzymatic activity of histidine decarboxylase (HDC) in basophils, mast cells, gastric enterochromaffin-like (ECL) cells and histaminergic neuronal cells. Upon a series of cellular stimuli, these cells release stored histamine, which elicits allergies, inflammation, and gastric acid secretion and regulates neuronal activity. Recent studies have shown that certain other types of myeloid lineage cells also produce histamine with HDC induction under various pathogenic stimuli. Histamine has been shown to play a series of pathophysiological roles by modulating immune and inflammatory responses in a number of disease conditions, whereas the mechanistic aspects underlying induced HDC expression remain elusive. In the present review, we summarize the current understanding of the regulatory mechanism of Hdc gene expression and the roles played by histamine in physiological contexts as well as pathogenic processes. We also introduce a newly developed histaminergic cell-monitoring transgenic mouse line (Hdc-BAC-GFP) that serves as a valuable experimental tool to identify the source of histamine and dissect upstream regulatory signals.


Assuntos
Histamina/metabolismo , Histidina Descarboxilase/metabolismo , Receptores Histamínicos/metabolismo , Sepse/imunologia , Animais , Cromossomos Artificiais Bacterianos , Regulação Enzimológica da Expressão Gênica/imunologia , Histamina/fisiologia , Histidina Descarboxilase/genética , Histonas/metabolismo , Metilação , Camundongos , Camundongos Transgênicos , Células Mieloides/metabolismo , Sepse/metabolismo
7.
Genes Cells ; 25(9): 607-614, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32562431

RESUMO

Catecholamine synthesized in the sympathoadrenal system, including sympathetic neurons and adrenal chromaffin cells, is vital for cardiovascular homeostasis. It has been reported that GATA2, a zinc finger transcription factor, is expressed in murine sympathoadrenal progenitor cells. However, a physiological role for GATA2 in adrenal chromaffin cells has not been established. In this study, we demonstrate that GATA2 is specifically expressed in adrenal chromaffin cells. We examined the consequences of Gata2 loss-of-function mutations, exploiting a Gata2 conditional knockout allele crossed to neural crest-specific Wnt1-Cre transgenic mice (Gata2 NC-CKO). The vast majority of Gata2 NC-CKO embryos died by embryonic day 14.5 (e14.5) and exhibited a decrease in catecholamine-producing adrenal chromaffin cells, implying that a potential catecholamine defect might lead to the observed embryonic lethality. When intercrossed pregnant dams were fed with synthetic adrenaline analogs, the lethality of the Gata2 NC-CKO embryos was partially rescued, indicating that placental transfer of the adrenaline analogs complements the lethal catecholamine deficiency in the Gata2 NC-CKO embryos. These results demonstrate that GATA2 participates in the development of neuroendocrine adrenaline biosynthesis, which is essential for fetal survival.


Assuntos
Células Cromafins/metabolismo , Fator de Transcrição GATA2/fisiologia , Glândulas Suprarrenais/anatomia & histologia , Medula Suprarrenal/metabolismo , Animais , Epinefrina/fisiologia , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Genes Letais , Camundongos , Camundongos Transgênicos , Crista Neural
8.
Genes Cells ; 24(8): 534-545, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31141264

RESUMO

Zinc-finger transcription factors GATA2 and GATA3 are both expressed in the developing inner ear, although their overlapping versus distinct activities in adult definitive inner ear are not well understood. We show here that GATA2 and GATA3 are co-expressed in cochlear spiral ganglion cells and redundantly function in the maintenance of spiral ganglion cells and auditory neural circuitry. Notably, Gata2 and Gata3 compound heterozygous mutant mice had a diminished number of spiral ganglion cells due to enhanced apoptosis, which resulted in progressive hearing loss. The decrease in spiral ganglion cellularity was associated with lowered expression of neurotrophin receptor TrkC that is an essential factor for spiral ganglion cell survival. We further show that Gata2 null mutants that additionally bear a Gata2 YAC (yeast artificial chromosome) that counteracts the lethal hematopoietic deficiency due to complete Gata2 loss nonetheless failed to complement the deficiency in neonatal spiral ganglion neurons. Furthermore, cochlea-specific Gata2 deletion mice also had fewer spiral ganglion cells and resultant hearing impairment. These results show that GATA2 and GATA3 redundantly function to maintain spiral ganglion cells and hearing. We propose possible mechanisms underlying hearing loss in human GATA2- or GATA3-related genetic disorders.


Assuntos
Surdez/etiologia , Fatores de Transcrição GATA/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Animais , Apoptose/genética , Contagem de Células , Cóclea/metabolismo , Cóclea/patologia , Surdez/metabolismo , Surdez/fisiopatologia , Modelos Animais de Doenças , Fatores de Transcrição GATA/genética , Expressão Gênica , Genes Reporter , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Gânglio Espiral da Cóclea/patologia
9.
Proc Natl Acad Sci U S A ; 112(39): 12169-74, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26371321

RESUMO

Sickle cell disease (SCD) is an inherited disorder caused by a point mutation in the ß-globin gene, leading to the production of abnormally shaped red blood cells. Sickle cells are prone to hemolysis and thereby release free heme into plasma, causing oxidative stress and inflammation that in turn result in damage to multiple organs. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is a master regulator of the antioxidant cell-defense system. Here we show that constitutive Nrf2 activation by ablation of its negative regulator Keap1 (kelch-like ECH-associated protein 1) significantly improves symptoms in SCD model mice. SCD mice exhibit severe liver damage and lung inflammation associated with high expression levels of proinflammatory cytokines and adhesion molecules compared with normal mice. Importantly, these symptoms subsided after Nrf2 activation. Although hemolysis and stress erythropoiesis did not change substantially in the Nrf2-activated SCD mice, Nrf2 promoted the elimination of plasma heme released by sickle cells' hemolysis and thereby reduced oxidative stress and inflammation, demonstrating that Nrf2 activation reduces organ damage and segregates inflammation from prevention of hemolysis in SCD mice. Furthermore, administration of the Nrf2 inducer CDDO-Im (2-cyano-3, 12 dioxooleana-1, 9 diene-28-imidazolide) also relieved inflammation and organ failure in SCD mice. These results support the contention that Nrf2 induction may be an important means to protect organs from the pathophysiology of sickle cell-induced damage.


Assuntos
Anemia Falciforme/complicações , Inflamação/genética , Inflamação/terapia , Fígado/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/genética , Ativação Transcricional/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Anemia Falciforme/terapia , Animais , Proteínas do Citoesqueleto/genética , Primers do DNA/genética , Citometria de Fluxo , Técnicas de Inativação de Genes , Immunoblotting , Proteína 1 Associada a ECH Semelhante a Kelch , Luciferases , Camundongos , Fator 2 Relacionado a NF-E2/genética , Reação em Cadeia da Polimerase em Tempo Real
10.
Blood ; 125(21): 3306-15, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25855601

RESUMO

GATA2 plays a crucial role for the mast cell fate decision. We herein demonstrate that GATA2 is also required for the maintenance of the cellular identity in committed mast cells derived from mouse bone marrow (BMMCs). The deletion of the GATA2 DNA binding domain (GATA2ΔCF) in BMMCs resulted in a loss of the mast cell phenotype and an increase in the number of CD11b- and/or Ly6G/C-positive cells. These cells showed the ability to differentiate into macrophage- and neutrophil-like cells but not into eosinophils. Although the mRNA levels of basophil-specific genes were elevated, CD49b, a representative basophil marker, never appeared on these cells. GATA2 ablation led to a significant upregulation of C/EBPα, and forced expression of C/EBPα in wild-type BMMCs phenocopied the GATA2ΔCF cells. Interestingly, simultaneous deletion of the Gata2 and Cebpa genes in BMMCs restored the aberrant increases of CD11b and Ly6G/C while retaining the reduced c-Kit expression. Chromatin immunoprecipitation assays indicated that GATA2 directly binds to the +37-kb region of the Cebpa gene and thereby inhibits the RUNX1 and PU.1 binding to the neighboring region. Upregulation of C/EBPα following the loss of GATA2 was not observed in cultured mast cells derived from peritoneal fluid, whereas the repression of c-Kit and other mast cell-specific genes were observed in these cells. Collectively, these results indicate that GATA2 maintains cellular identity by preventing Cebpa gene activation in a subpopulation of mast cells, whereas it plays a fundamental role as a positive regulator of mast cell-specific genes throughout development of this cell lineage.


Assuntos
Células da Medula Óssea/citologia , Desdiferenciação Celular/imunologia , Fator de Transcrição GATA2/metabolismo , Mastócitos/citologia , Células-Tronco/citologia , Animais , Western Blotting , Diferenciação Celular/imunologia , Imunoprecipitação da Cromatina , Citometria de Fluxo , Fator de Transcrição GATA2/imunologia , Mastócitos/metabolismo , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Gastroenterology ; 146(1): 157-165.e10, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24120474

RESUMO

BACKGROUND & AIMS: Infantile hypertrophic pyloric stenosis is a common birth anomaly characterized by obstruction of the pyloric lumen. A genome-wide association study implicated NKX2-5, which encodes a transcription factor that is expressed in embryonic heart and pylorus, in the pathogenesis of infantile hypertrophic pyloric stenosis. However, the function of the NKX2-5 in pyloric smooth muscle development has not been examined directly. We investigated the pattern of Nkx2-5 during the course of murine pyloric sphincter development and examined coexpression of Nkx2-5 with Gata3 and Sox9-other transcription factors with pyloric-specific mesenchymal expression. We also assessed pyloric sphincter development in mice with disruption of Nkx2-5 or Gata3. METHODS: We used immunofluorescence analysis to compare levels of NKX2-5, GATA3, and SOX9 in different regions of smooth muscle cells. Pyloric development was assessed in mice with conditional or germline deletion of Nkx2-5 or Gata3, respectively. RESULTS: Gata3, Nkx2-5, and Sox9 are coexpressed in differentiating smooth muscle cells of a distinct fascicle of the pyloric outer longitudinal muscle. Expansion of this fascicle coincides with development of the pyloric sphincter. Disruption of Nkx2-5 or Gata3 causes severe hypoplasia of this fascicle and alters pyloric muscle shape. Although expression of Sox9 requires Nkx2-5 and Gata3, there is no apparent hierarchical relationship between Nkx2-5 and Gata3 during pyloric outer longitudinal muscle development. CONCLUSIONS: Nkx2-5 and Gata3 are independently required for the development of a pyloric outer longitudinal muscle fascicle, which is required for pyloric sphincter morphogenesis in mice. These data indicate that regulatory changes that alter Nkx2-5 or Gata3 expression could contribute to pathogenesis of infantile hypertrophic pyloric stenosis.


Assuntos
Fator de Transcrição GATA3/metabolismo , Proteínas de Homeodomínio/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Liso/embriologia , Miócitos de Músculo Liso/metabolismo , Piloro/embriologia , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição/metabolismo , Animais , Imunofluorescência , Proteína Homeobox Nkx-2.5 , Camundongos , Músculo Liso/metabolismo , Piloro/metabolismo
12.
Blood ; 122(20): 3450-60, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24021675

RESUMO

GATA1 is a master regulator of hematopoietic differentiation, but Gata1 expression is inactivated in hematopoietic stem cells (HSCs). Using a bacterial artificial chromosome containing the Gata1 gene modified with green fluorescent protein (GFP) reporter, we explored the function of the 3.7-kb Gata1 upstream region (GdC region) that harbors 3 core cis-elements: Gata1 hematopoietic enhancer, double GATA-motif, and CACCC-motif. Transgenic GFP expression directed by the Gata1-BAC faithfully recapitulated the endogenous Gata1 expression pattern. However, deletion of the GdC-region eliminated reporter expression in all hematopoietic cells. To test whether the combination of the core cis-elements represents the regulatory function of the GdC-region, we replaced the region with a 659-bp minigene that linked the three cis-elements (MG-GFP). The GFP reporter expression directed by the MG-GFP BAC fully recapitulated the erythroid-megakaryocytic Gata1 expression. However, the GFP expression was aberrantly increased in the HSCs and was associated with decreases in DNA methylation and abundant GATA2 binding to the transgenic MG-GFP allele. The 3.2-kb sequences interspaced between the Gata1 hematopoietic enhancer and the double GATA-motif were able to recruit DNA methyltransferase 1, thereby exerting a cis-repressive function in the HSC-like cell line. These results indicate that the 3.2-kb interspacing sequences inactivate Gata1 by maintaining DNA-methylation in the HSCs.


Assuntos
Células Eritroides/metabolismo , Fator de Transcrição GATA1/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Hematopoéticas/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Linhagem da Célula , Células Cultivadas/metabolismo , Cromossomos Artificiais Bacterianos , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Elementos Facilitadores Genéticos/genética , Eritropoese/genética , Fator de Transcrição GATA1/fisiologia , Fator de Transcrição GATA2/metabolismo , Inativação Gênica , Genes Reporter , Genes Sintéticos , Fígado/citologia , Fígado/embriologia , Megacariócitos/metabolismo , Camundongos , Camundongos Transgênicos , Motivos de Nucleotídeos/genética , Deleção de Sequência , Ativação Transcricional/genética
13.
J Am Soc Nephrol ; 25(11): 2546-57, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24722438

RESUMO

We previously showed that the transcription factor Mafb is essential for podocyte differentiation and foot process formation. Podocytes are susceptible to injury in diabetes, and this injury leads to progression of diabetic nephropathy. In this study, we generated transgenic mice that overexpress Mafb in podocytes using the nephrin promoter/enhancer. To examine a potential pathogenetic role for Mafb in diabetic nephropathy, Mafb transgenic mice were treated with either streptozotocin or saline solution. Diabetic nephropathy was assessed by renal histology and biochemical analyses of urine and serum. Podocyte-specific overexpression of Mafb had no effect on body weight or blood glucose levels in either diabetic or control mice. Notably, albuminuria and changes in BUN levels and renal histology observed in diabetic wild-type animals were ameliorated in diabetic Mafb transgenic mice. Moreover, hyperglycemia-induced downregulation of Nephrin was mitigated in diabetic Mafb transgenic mice, and reporter assay results suggested that Mafb regulates Nephrin directly. Mafb transgenic glomeruli also overexpressed glutathione peroxidase, an antioxidative stress enzyme, and levels of the oxidative stress marker 8-hydroxydeoxyguanosine decreased in the urine of diabetic Mafb transgenic mice. Finally, Notch2 expression increased in diabetic glomeruli, and this effect was enhanced in diabetic Mafb transgenic glomeruli. These data indicate Mafb has a protective role in diabetic nephropathy through regulation of slit diaphragm proteins, antioxidative enzymes, and Notch pathways in podocytes and suggest that Mafb could be a therapeutic target.


Assuntos
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Fator de Transcrição MafB/genética , Podócitos/fisiologia , Animais , Apoptose/fisiologia , Glicemia/metabolismo , Peso Corporal/fisiologia , Linhagem Celular Transformada , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Expressão Gênica/fisiologia , Glutationa Peroxidase/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Insulina/sangue , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Podócitos/patologia , Regiões Promotoras Genéticas/genética , Receptor Notch2/metabolismo , Transdução de Sinais/fisiologia
14.
Cancer Sci ; 105(5): 600-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24862985

RESUMO

Transcriptional GATA factors are known lineage selector genes and regulate a variety of biological processes including specification and differentiation of tissues. In the present study, we examined expression profiles of six GATA factor genes in invasive ductal carcinomas (IDC) of the breast using microarray analysis (n = 20) and found that GATA4 expression was closely correlated with recurrence in patients. Because the significance of GATA4 has remained largely unknown in breast carcinoma, we further immunolocalized GATA4 in ductal carcinoma in situ (DCIS) of the breast (n = 48) and IDC (n = 163). GATA4 immunoreactivity was detected in the nuclei of carcinoma cells and was positive in 27% of DCIS and 31% of IDC cases. GATA4 status was significantly associated with nuclear grade and van Nuys classification in DCIS and was positively associated with distant metastasis, histological grade and HER2 status, but negatively correlated with progesterone receptor labeling index in IDC. Subsequent multivariate analysis demonstrated that GATA4 status was an independent prognostic factor for both disease-free and breast cancer-specific survival of IDC patients. All of these results indicate that GATA4 plays important roles in the progression of breast carcinoma from an early stage and that immunohistochemical GATA4 status is considered a potent prognostic factor in human breast cancer patients.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Fator de Transcrição GATA4/metabolismo , Recidiva Local de Neoplasia/patologia , Adulto , Idoso , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Intervalo Livre de Doença , Feminino , Fator de Transcrição GATA4/genética , Expressão Gênica , Humanos , Imuno-Histoquímica , Microdissecção e Captura a Laser , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Receptor ErbB-2/metabolismo , Receptores de Progesterona/metabolismo
15.
Genes Cells ; 18(10): 886-98, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23890289

RESUMO

GATA1 is a transcription factor essential for erythropoiesis and megakaryopoiesis. It has been found that Gata1 gene knockdown heterozygous female (Gata1(G1.05/+)) mice spontaneously develop erythroblastic leukemias. In this study, we have generated a novel Gata1 knockdown erythroblastic cell line, designated GAK14, from the leukemia cells in the Gata1(G1.05/+) mice. Although GAK14 cells maintain immature phenotype on OP9 stromal cells in the presence of erythropoietin and stem cell factor, the cells produce Gr-1-, Mac1-, B220-, CD3e- or CD49b-positive hematopoietic cells when co-cultured with DAS104-8 feeder cells. However, GAK14 cells did not produce erythroid and megakaryocytic lineages, perhaps due to the absence of GATA1. Indeed, GAK14 cells became capable of differentiating into mature erythroid cells when complemented with full-length GATA1 and co-cultured with fetal liver-derived FLS5 stromal cells. This differentiation potential was impaired when GATA1 lacking the N-terminal domain was complemented. The N-terminal domain is known to contribute to the pathogenesis of transient abnormal myelopoiesis and acute megakaryoblastic leukemia related to Down syndrome. These results thus showed that GAK14 cells will serve as a powerful tool for dissecting domain function of GATA1 and that the GATA1 N-terminal domain is essential for the erythroid differentiation of GAK14 cells.


Assuntos
Aminoácidos/genética , Linhagem Celular Tumoral , Células Precursoras Eritroides/fisiologia , Eritropoese , Fator de Transcrição GATA1/química , Fator de Transcrição GATA1/metabolismo , Leucemia Eritroblástica Aguda , Animais , Linhagem da Célula , Técnicas de Cocultura , Células Precursoras Eritroides/metabolismo , Feminino , Fator de Transcrição GATA1/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Células Progenitoras de Megacariócitos/fisiologia , Camundongos , Mielopoese , Estrutura Terciária de Proteína
16.
Genes Cells ; 18(11): 921-33, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23911012

RESUMO

Transcription factor GATA2 is highly expressed in hematopoietic stem cells and progenitors, whereas its expression declines after erythroid commitment of progenitors. In contrast, the start of GATA1 expression coincides with the erythroid commitment and increases along with the erythroid differentiation. We refer this dynamic transition of GATA factor expression to as the 'GATA factor switching'. Here, we examined contribution of the GATA factor switching to the erythroid differentiation. In Gata1-knockdown embryos that concomitantly express Gata2-GFP reporter, high-level expression of GFP reporter was detected in accumulated immature hematopoietic cells with impaired differentiation, demonstrating that GATA1 represses Gata2 gene expression in hematopoietic progenitors in vivo. We have conducted chromatin immunoprecipitation (ChIP) on microarray analyses of GATA2 and GATA1, and results indicate that the GATA1-binding sites widely overlap with the sites pre-occupied by GATA2 before the GATA1 expression. Importantly, erythroid genes harboring GATA boxes bound by both GATA1 and GATA2 tend to be expressed in immature erythroid cells, whereas those harboring GATA boxes to which GATA1 binds highly but GATA2 binds only weakly are important for the mature erythroid cell function. Our results thus support the contention that preceding binding of GATA2 helps the following binding of GATA1 and thereby secures smooth expression of the transient-phase genes.


Assuntos
Células Eritroides/citologia , Eritropoese/fisiologia , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA2/genética , Células-Tronco Hematopoéticas/citologia , Animais , Sítios de Ligação , Diferenciação Celular , Células Eritroides/metabolismo , Fator de Transcrição GATA1/metabolismo , Fator de Transcrição GATA2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Transgênicos
17.
J Am Soc Nephrol ; 24(10): 1599-616, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23833259

RESUMO

CKD progresses with fibrosis and erythropoietin (Epo)-dependent anemia, leading to increased cardiovascular complications, but the mechanisms linking Epo-dependent anemia and fibrosis remain unclear. Here, we show that the cellular phenotype of renal Epo-producing cells (REPs) alternates between a physiologic Epo-producing state and a pathologic fibrogenic state in response to microenvironmental signals. In a novel mouse model, unilateral ureteral obstruction-induced inflammatory milieu activated NFκB and Smad signaling pathways in REPs, rapidly repressed the Epo-producing potential of REPs, and led to myofibroblast transformation of these cells. Moreover, we developed a unique Cre-based cell-fate tracing method that marked current and/or previous Epo-producing cells and revealed that the majority of myofibroblasts are derived from REPs. Genetic induction of NFκB activity selectively in REPs resulted in myofibroblastic transformation, indicating that NFκB signaling elicits a phenotypic switch. Reversing the unilateral ureteral obstruction-induced inflammatory microenvironment restored the Epo-producing potential and the physiologic phenotype of REPs. This phenotypic reversion was accelerated by anti-inflammatory therapy. These findings demonstrate that REPs possess cellular plasticity, and suggest that the phenotypic transition of REPs to myofibroblasts, modulated by inflammatory molecules, underlies the connection between anemia and renal fibrosis in CKD.


Assuntos
Eritropoetina/biossíntese , Nefroesclerose/etiologia , Insuficiência Renal Crônica/complicações , Anemia/etiologia , Animais , Metilases de Modificação do DNA/metabolismo , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Knockout , Miofibroblastos/citologia , Miofibroblastos/patologia , NF-kappa B/metabolismo , Nefroesclerose/metabolismo , Nefroesclerose/patologia , Fenótipo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
18.
Exp Anim ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231733

RESUMO

Sepsis-induced acute lung injury represents a significant threat to human health and is frequently associated with pulmonary thrombosis due to dysregulation of the coagulofibrinolytic system. Plasmin, the major protease that degrades fibrin aggregates, is activated predominantly by tissue-plasminogen activator (tPA), whereas tPA is negatively regulated by plasminogen activator inhibitor (PAI-1). Under septic conditions, the imbalance between coagulation and fibrinolysis results in excessive microthrombosis. Pulmonary capillary endothelial cells serve as a primary source of tPA and PAI-1. The molecular pathways regulating their expression levels depend on the differential activity of transcription factors. In this study, we elucidated the role of the zinc-finger transcription factor GATA3 in response to sepsis-induced pulmonary embolism. Endothelial cell-specific GATA3-deficient mice (G3-ECKO) presented increased susceptibility to bacterial endotoxin-induced pulmonary embolism, which was associated with increased PAI-1 expression levels and decreased tPA expression levels in the lungs. Septic lung extracts from G3-ECKO mice consistently presented decreased plasmin activity, which likely underlies the increased coagulation. These results demonstrate that GATA3 plays a protective role against bacterial endotoxin-induced pulmonary vascular embolism. Our findings will contribute to understanding the molecular mechanisms involving GATA3 in preventing pulmonary embolism.

19.
J Biochem ; 175(5): 551-560, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38168819

RESUMO

Lymphedema has become a global health issue following the growing number of cancer surgeries. Curative or supportive therapeutics have long been awaited for this refractory condition. Transcription factor GATA2 is crucial in lymphatic development and maintenance, as GATA2 haploinsufficient disease often manifests as lymphedema. We recently demonstrated that Gata2 heterozygous deficient mice displayed delayed lymphatic recanalization upon lymph node resection. However, whether GATA2 contributes to lymphatic regeneration by functioning in the damaged lymph vessels' microenvironment remains explored. In this study, our integrated analysis demonstrated that dermal collagen fibers were more densely accumulated in the Gata2 heterozygous deficient mice. The collagen metabolism-related transcriptome was perturbed, and collagen matrix contractile activity was aberrantly increased in Gata2 heterozygous embryonic fibroblasts. Notably, soluble collagen placement ameliorated delayed lymphatic recanalization, presumably by modulating the stiffness of the extracellular matrix around the resection site of Gata2 heterozygous deficient mice. Our results provide valuable insights into mechanisms underlying GATA2-haploinsufficiency-mediated lymphedema and shed light on potential therapeutic avenues for this intractable disease.


Assuntos
Colágeno , Fator de Transcrição GATA2 , Heterozigoto , Linfedema , Animais , Camundongos , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/genética , Linfedema/metabolismo , Linfedema/genética , Linfedema/patologia , Colágeno/metabolismo , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Camundongos Knockout , Haploinsuficiência , Deficiência de GATA2/metabolismo , Deficiência de GATA2/genética , Camundongos Endogâmicos C57BL
20.
J Biochem ; 176(2): 155-166, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38621657

RESUMO

Hydrostatic pressure is a common mechanical stressor that modulates metabolism and reduces cell viability. Eukaryotic cells have genetic programs to cope with hydrostatic pressure stress and maintain intracellular homeostasis. However, the mechanism underlying hydrostatic pressure tolerance remains largely unknown. We have recently demonstrated that maintenance of telomere capping protein 6 (Mtc6) plays a protective role in the survival of the budding yeast Saccharomyces cerevisiae under hydrostatic pressure stress by supporting the integrity of nutrient permeases. The current study demonstrates that Mtc6 acts as an endoplasmic reticulum (ER) membrane protein. Mtc6 comprises two transmembrane domains, a C-terminal cytoplasmic domain and a luminal region with 12 Asn (N)-linked glycans attached to it. Serial mutational analyses showed that the cytoplasmic C-terminal amino acid residues GVPS Mtc6 activity. Multiple N-linked glycans in the luminal region are involved in the structural conformation of Mtc6. Moreover, deletion of MTC6 led to increased degradation of the leucine permease Bap2 under hydrostatic pressure, suggesting that Mtc6 facilitates the proper folding of nutrient permeases in the ER under stress conditions. We propose a novel model of molecular function in which the glycosylated luminal domain and cytoplasmic GVPS sequences of Mtc6 cooperatively support the nutrient permease activity.


Assuntos
Retículo Endoplasmático , Pressão Hidrostática , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Retículo Endoplasmático/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Glicoproteínas/metabolismo , Glicoproteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA