RESUMO
The X and Z sex chromosomes play a disproportionately large role in intrinsic postzygotic isolation. The underlying mechanisms of this large X/Z effect are, however, still poorly understood. Here we tested whether faster rates of molecular evolution caused by more intense positive selection or genetic drift on the Z chromosome could contribute to the large Z effect in two closely related passerine birds, the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (L. luscinia). We found that the two species differ in patterns of molecular evolution on the Z chromosome. The Z chromosome of L. megarhynchos showed lower levels of within-species polymorphism and an excess of non-synonymous polymorphisms relative to non-synonymous substitutions. This is consistent with increased levels of genetic drift on this chromosome and may be attributed to more intense postcopulatory sexual selection acting on L. megarhynchos males as was indicated by significantly longer sperm and higher between-male variation in sperm length in L. megarhynchos compared to L. luscinia. Interestingly, analysis of interspecific gene flow on the Z chromosome revealed relatively lower levels of introgression from L. megarhynchos to L. luscinia than vice versa, indicating that the Z chromosome of L. megarhynchos accumulated more hybrid incompatibilities. Our results are consistent with the view that postcopulatory sexual selection may reduce the effective population size of the Z chromosome and thus lead to stronger genetic drift on this chromosome in birds. This can result in relatively faster accumulation of hybrid incompatibilities on the Z and thus contribute to the large Z effect.
Assuntos
Preferência de Acasalamento Animal , Cromossomos Sexuais/genética , Aves Canoras/genética , Animais , Evolução Molecular , Fluxo Gênico , Deriva Genética , Especiação Genética , Variação Genética , Masculino , Aves Canoras/fisiologia , Especificidade da Espécie , Espermatozoides/citologiaRESUMO
Hybrid sterility is a common first step in the evolution of postzygotic reproductive isolation. According to Haldane's Rule, it affects predominantly the heterogametic sex. While the genetic basis of hybrid male sterility in organisms with heterogametic males has been studied for decades, the genetic basis of hybrid female sterility in organisms with heterogametic females has received much less attention. We investigated the genetic basis of reproductive isolation in two closely related avian species, the common nightingale (Luscinia megarhynchos) and the thrush nightingale (L. luscinia), that hybridize in a secondary contact zone and produce viable hybrid progeny. In accordance with Haldane's Rule, hybrid females are sterile, while hybrid males are fertile, allowing gene flow to occur between the species. Using transcriptomic data from multiple individuals of both nightingale species, we identified genomic islands of high differentiation (FST ) and of high divergence (Dxy ), and we analysed gene content and patterns of molecular evolution within these islands. Interestingly, we found that these islands were enriched for genes related to female meiosis and metabolism. The islands of high differentiation and divergence were also characterized by higher levels of linkage disequilibrium than the rest of the genome in both species indicating that they might be situated in genomic regions of low recombination. This study provides one of the first insights into genetic basis of hybrid female sterility in organisms with heterogametic females.
Assuntos
Estudos de Associação Genética , Ilhas Genômicas/genética , Hibridização Genética , Infertilidade Feminina/genética , Aves Canoras/genética , Animais , Cromossomos/genética , Evolução Molecular , Feminino , Variação Genética , Desequilíbrio de Ligação/genética , Meiose/genéticaRESUMO
Genomic GC content can vary locally, and GC-rich regions are usually associated with increased DNA thermostability in thermophilic prokaryotes and warm-blooded eukaryotes. Among vertebrates, fish and amphibians appeared to possess a distinctly less heterogeneous AT/GC organization in their genomes, whereas cytogenetically detectable GC heterogeneity has so far only been documented in mammals and birds. The subject of our study is the gar, an ancient "living fossil" of a basal ray-finned fish lineage, known from the Cretaceous period. We carried out cytogenomic analysis in two gar genera (Atractosteus and Lepisosteus) uncovering a GC chromosomal pattern uncharacteristic for fish. Bioinformatic analysis of the spotted gar (Lepisosteus oculatus) confirmed a GC compartmentalization on GC profiles of linkage groups. This indicates a rather mammalian mode of compositional organization on gar chromosomes. Gars are thus the only analyzed extant ray-finned fishes with a GC compartmentalized genome. Since gars are cold-blooded anamniotes, our results contradict the generally accepted hypothesis that the phylogenomic onset of GC compartmentalization occurred near the origin of amniotes. Ecophysiological findings of other authors indicate a metabolic similarity of gars with mammals. We hypothesize that gars might have undergone convergent evolution with the tetrapod lineages leading to mammals on both metabolic and genomic levels. Their metabolic adaptations might have left footprints in their compositional genome evolution, as proposed by the metabolic rate hypothesis. The genome organization described here in gars sheds new light on the compositional genome evolution in vertebrates generally and contributes to better understanding of the complexities of the mechanisms involved in this process.
Assuntos
Peixes/genética , Genoma , Mamíferos/genética , Filogenia , Animais , Biologia Computacional , Genômica , Cariótipo , Fatores de TempoRESUMO
Cypridoidean ostracods are one of a number of animal taxa that reproduce with giant sperm, up to 10 000 µm in length, but they are the only group to have aflagellate, filamentous giant sperm. The evolution and function of this highly unusual feature of reproduction with giant sperm are currently unknown. The hypothesis of long-term evolutionary persistence of this kind of reproduction has never been tested. We here report giant sperm discovered by propagation phase contrast X-ray synchrotron micro- and nanotomography, preserved in five Miocene ostracod specimens from Queensland, Australia. The specimens belong to the species Heterocypris collaris Matzke-Karasz et al. 2013 (one male and three females) and Newnhamia mckenziana Matzke-Karasz et al. 2013 (one female). The sperm are not only the oldest petrified gametes on record, but include three-dimensional subcellular preservation. We provide direct evidence that giant sperm have been a feature of this taxon for at least 16 Myr and provide an additional criterion (i.e. longevity) to test hypotheses relating to origin and function of giant sperm in the animal kingdom. We further argue that the highly resistant, most probably chitinous coats of giant ostracod sperm may play a role in delaying decay processes, favouring early mineralization of soft tissue.
Assuntos
Cavernas , Crustáceos/ultraestrutura , Fósseis , Animais , Austrália , Evolução Biológica , Masculino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Queensland , Espermatozoides/ultraestrutura , Microtomografia por Raio-XRESUMO
Theory predicts that sexually antagonistic mutations will be over- or under-represented on the X and Z chromosomes, depending on their average dominance coefficients. However, as little is known about the dominance coefficients for new mutations, the effect of sexually antagonistic selection is difficult to predict. To elucidate the role of sexually antagonistic selection in the evolution of Z chromosome gene content in chicken, we analyzed publicly available microarray data from several somatic tissues as well as somatic and germ cells of the ovary. We found that the Z chromosome is enriched for genes showing preferential expression in ovarian somatic cells, but not for genes with preferential expression in primary oocytes or non-sex-specific somatic tissues. Our results suggest that sexual antagonism leads to a higher abundance of female-benefit alleles on the Z chromosome. No bias toward Z-linkage for oocyte-enriched genes can be explained by lower intensity of sexually antagonistic selection in ovarian germ cells compared to ovarian somatic cells. An alternative explanation would be that meiotic Z chromosome inactivation hinders accumulation of oocyte-expressed genes on the Z chromosome. Our results are consistent with findings in mammals and indicate that recessive rather than dominant sexually antagonistic mutations shape the gene content of the X and Z chromosomes.
Assuntos
Galinhas/genética , Mecanismo Genético de Compensação de Dose/genética , Regulação da Expressão Gênica no Desenvolvimento , Ovário/fisiologia , Cromossomos Sexuais/genética , Animais , Distribuição de Qui-Quadrado , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Células da Granulosa/metabolismo , Modelos Lineares , Meiose , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oogênese , Especificidade de Órgãos , Ovário/citologia , Ovário/metabolismo , Seleção Genética , Cromossomos Sexuais/metabolismoRESUMO
With the rise of next-generation sequencing methods, it has become increasingly possible to obtain genomewide sequence data even for nonmodel species. Such data are often used for the development of single nucleotide polymorphism (SNP) markers, which can subsequently be screened in a larger population sample using a variety of genotyping techniques. Many of these techniques require appropriate locus-specific PCR and genotyping primers. Currently, there is no publicly available software for the automated design of suitable PCR and genotyping primers from next-generation sequence data. Here we present a pipeline called Scrimer that automates multiple steps, including adaptor removal, read mapping, selection of SNPs and multiple primer design from transcriptome data. The designed primers can be used in conjunction with several widely used genotyping methods such as SNaPshot or MALDI-TOF genotyping. Scrimer is composed of several reusable modules and an interactive bash workflow that connects these modules. Even the basic steps are presented, so the workflow can be executed in a step-by-step manner. The use of standard formats throughout the pipeline allows data from various sources to be plugged in, as well as easy inspection of intermediate results with visualization tools of the user's choice.
Assuntos
Biologia Computacional/métodos , Primers do DNA/genética , Análise de Sequência de DNA/métodos , Transcriptoma , Técnicas de Genotipagem/métodos , Reação em Cadeia da Polimerase/métodosRESUMO
Bird song plays an important role in the establishment and maintenance of prezygotic reproductive barriers. When two closely related species come into secondary contact, song convergence caused by acquisition of heterospecific songs into the birds' repertoires is often observed. The proximate mechanisms responsible for such mixed singing, and its effect on the speciation process, are poorly understood. We used a combination of genetic and bioacoustic analyses to test whether mixed singing observed in the secondary contact zone of two passerine birds, the Thrush Nightingale (Luscinia luscinia) and the Common Nightingale (L. megarhynchos), is caused by introgressive hybridization. We analysed song recordings of both species from allopatric and sympatric populations together with genotype data from one mitochondrial and seven nuclear loci. Semi-automated comparisons of our recordings with an extensive catalogue of Common Nightingale song types confirmed that most of the analysed sympatric Thrush Nightingale males were 'mixed singers' that use heterospecific song types in their repertoires. None of these 'mixed singers' possessed any alleles introgressed from the Common Nightingale, suggesting that they were not backcross hybrids. We also analysed songs of five individuals with intermediate phenotype, which were identified as F1 hybrids between the Thrush Nightingale female and the Common Nightingale male by genetic analysis. Songs of three of these hybrids corresponded to the paternal species (Common Nightingale) but the remaining two sung a mixed song. Our results suggest that although hybridization might increase the tendency for learning songs from both parental species, interspecific cultural transmission is the major proximate mechanism explaining the occurrence of mixed singers among the sympatric Thrush Nightingales. We also provide evidence that mixed singing does not substantially increase the rate of interspecific hybridization and discuss the possible adaptive value of this phenomenon in nightingales.