RESUMO
Colorectal cancer is one of the most common cancers in the world. While colonoscopy is an effective screening technique, navigating an endoscope through the colon to detect polyps is challenging. A 3D map of the observed surfaces could enhance the identification of unscreened colon tissue and serve as a training platform. However, reconstructing the colon from video footage remains difficult. Learning-based approaches hold promise as robust alternatives, but necessitate extensive datasets. Establishing a benchmark dataset, the 2022 EndoVis sub-challenge SimCol3D aimed to facilitate data-driven depth and pose prediction during colonoscopy. The challenge was hosted as part of MICCAI 2022 in Singapore. Six teams from around the world and representatives from academia and industry participated in the three sub-challenges: synthetic depth prediction, synthetic pose prediction, and real pose prediction. This paper describes the challenge, the submitted methods, and their results. We show that depth prediction from synthetic colonoscopy images is robustly solvable, while pose estimation remains an open research question.
Assuntos
Colonoscopia , Imageamento Tridimensional , Humanos , Imageamento Tridimensional/métodos , Neoplasias Colorretais/diagnóstico por imagem , Pólipos do Colo/diagnóstico por imagemRESUMO
Computer-assisted systems are becoming broadly used in medicine. In endoscopy, most research focuses on the automatic detection of polyps or other pathologies, but localization and navigation of the endoscope are completely performed manually by physicians. To broaden this research and bring spatial Artificial Intelligence to endoscopies, data from complete procedures is needed. This paper introduces the Endomapper dataset, the first collection of complete endoscopy sequences acquired during regular medical practice, making secondary use of medical data. Its main purpose is to facilitate the development and evaluation of Visual Simultaneous Localization and Mapping (VSLAM) methods in real endoscopy data. The dataset contains more than 24 hours of video. It is the first endoscopic dataset that includes endoscope calibration as well as the original calibration videos. Meta-data and annotations associated with the dataset vary from the anatomical landmarks, procedure labeling, segmentations, reconstructions, simulated sequences with ground truth and same patient procedures. The software used in this paper is publicly available.