Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Res Notes ; 14(1): 205, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039412

RESUMO

OBJECTIVES: The main purpose of this publication is to help users (students, researchers, farmers, advisors, etc.) of weather data with agronomic purposes (e.g. crop yield forecast) to retrieve and process gridded weather data from different Application Programming Interfaces (API client) sources using R software. DATA DESCRIPTION: This publication consists of a code-tutorial developed in R that is part of the data-curation process from numerous research projects carried out by the Ciampitti's Lab, Department of Agronomy, Kansas State University. We make use of three weather databases for which specific libraries were developed in R language: (i) DAYMET (Thornton et al. in https://daymet.ornl.gov/ , 2019; https://github.com/bluegreen-labs/daymetr ), (ii) NASA-POWER (Sparks in J Open Source Softw 3:1035, 2018; https://github.com/ropensci/nasapower ), and (iii) Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) (Funk et al. in Sci Data 2:150066, 2015; https://github.com/ropensci/chirps ). The databases offer different weather variables, and vary in terms of spatio-temporal coverage and resolution. The tutorial shows and explain how to retrieve weather data from multiple locations at once using latitude and longitude coordinates. Additionally, it offers the possibility to create relevant variables and summaries that are of agronomic interest such as Shannon Diversity Index (SDI) of precipitation, abundant and well distributed rainfall (AWDR), growing degree days (GDD), crop heat units (CHU), extreme precipitation (EPE) and temperature events (ETE), reference evapotranspiration (ET0), among others.


Assuntos
Software , Tempo (Meteorologia) , Clima , Bases de Dados Factuais , Humanos , Kansas
2.
BMC Res Notes ; 14(1): 327, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446061

RESUMO

OBJECTIVES: This data article aims to introduce the "XPolaris" R-package, designed to facilitate access to detailed soil data at any geographical location within the contiguous United States (CONUS). Without the need of advanced R-programming skills, XPolaris enables users to convert raster data from the POLARIS database into traditional spreadsheet format [i.e., Comma-Separated Values (CSV)] for further data analyses. DATA DESCRIPTION: The core of this publication is a code-tutorial envisioned to assist users in retrieving soil raster data within the CONUS. All data is sourced from the POLARIS database, a 30-m probabilistic map of soil series and different soil properties [Chaney et al. Geoderma 274:54, 2016, Chaney et al. Water Resour Res 55:2916, 2019]. POLARIS represents an optimization of the Soil Survey Geographic (SSURGO) database, circumventing issues of spatial disaggregation, harmonizing, and filling spatial gaps. POLARIS was constructed using a machine learning algorithm, the Disaggregation and Harmonisation of Soil Map Units Through Resampled Classification Trees (DSMART-HPC) [Odgers et al. Geoderma 214:91, 2014]. Although the data is easily accessible in a raster format, retrieving large amounts of data can be time-consuming or require advanced programming skills.


Assuntos
Algoritmos , Solo , Estados Unidos
3.
Front Plant Sci ; 12: 727021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691106

RESUMO

Biological nitrogen (N) fixation is the most relevant process in soybeans (Glycine max L.) to satisfy plant N demand and sustain seed protein formation. Past studies describing N fixation for field-grown soybeans mainly focused on a single point time measurement (mainly toward the end of the season) and on the partial N budget (fixed-N minus seed N removal), overlooking the seasonal pattern of this process. Therefore, this study synthesized field datasets involving multiple temporal measurements during the crop growing season to characterize N fixation dynamics using both fixed-N (kg ha-1) and N derived from the atmosphere [Ndfa (%)] to define: (i) time to the maximum rate of N fixation (ß2), (ii) time to the maximum Ndfa (α2), and (iii) the cumulative fixed-N. The main outcomes of this study are that (1) the maximum rate of N fixation was around the beginning of pod formation (R3 stage), (2) time to the maximum Ndfa (%) was after full pod formation (R4), and (3) cumulative fixation was positively associated with the seasonal vapor-pressure deficit (VPD) and growth cycle length but negatively associated with soil clay content, and (4) time to the maximum N fixation rate (ß2) was positively impacted by season length and negatively impacted by high temperatures during vegetative growth (but positively for VPD, during the same period). Overall, variation in the timing of the maximum rate of N fixation occurred within a much narrower range of growth stages (R3) than the timing of the maximum Ndfa (%), which varied broadly from flowering (R1) to seed filing (R5-R6) depending on the evaluated studies. From a phenotyping standpoint, N fixation determinations after the R4 growth stage would most likely permit capturing both maximum fixed-N rate and maximum Ndfa (%). Further investigations that more closely screen the interplay between N fixation with soil-plant-environment factors should be pursued.

4.
Sci Rep ; 10(1): 17707, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077826

RESUMO

Soybean [Glycine max (L.) Merr.] is the most important oilseed crop for animal industry due to its high protein concentration and high relative abundance of essential and non-essential amino acids (AAs). However, the selection for high-yielding genotypes has reduced seed protein concentration over time, and little is known about its impact on AAs. The aim of this research was to determine the genetic shifts of seed composition for 18 AAs in 13 soybean genotypes released between 1980 and 2014. Additionally, we tested the effect of nitrogen (N) fertilization on protein and AAs trends. Soybean genotypes were grown in field conditions during two seasons under a control (0 N) and a N-fertilized treatment receiving 670 kg N ha-1. Seed yield increased 50% and protein decreased 1.2% comparing the oldest and newest genotypes. The application of N fertilizer did not significantly affect protein and AAs concentrations. Leucine, proline, cysteine, and tryptophan concentrations were not influenced by genotype. The other AAs concentrations showed linear rates of decrease over time ranging from - 0.021 to - 0.001 g kg-1 year-1. The shifts of 11 AAs (some essentials such as lysine, tryptophan, and threonine) displayed a relative-to-protein increasing concentration. These results provide a quantitative assessment of the trade-off between yield improvement and seed AAs concentrations and will enable future genetic yield gain without overlooking seed nutritional value.


Assuntos
Aminoácidos/análise , Glycine max/química , Glycine max/embriologia , Sementes/química , Proteínas de Soja/análise , Produtos Agrícolas/química , Produtos Agrícolas/embriologia , Genes de Plantas , Valor Nutritivo , Proteínas de Soja/genética , Glycine max/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA