Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Rev Neurosci ; 23(9): 551-567, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35732917

RESUMO

The collective activity of a population of neurons, beyond the properties of individual cells, is crucial for many brain functions. A fundamental question is how activity correlations between neurons affect how neural populations process information. Over the past 30 years, major progress has been made on how the levels and structures of correlations shape the encoding of information in population codes. Correlations influence population coding through the organization of pairwise-activity correlations with respect to the similarity of tuning of individual neurons, by their stimulus modulation and by the presence of higher-order correlations. Recent work has shown that correlations also profoundly shape other important functions performed by neural populations, including generating codes across multiple timescales and facilitating information transmission to, and readout by, downstream brain areas to guide behaviour. Here, we review this recent work and discuss how the structures of correlations can have opposite effects on the different functions of neural populations, thus creating trade-offs and constraints for the structure-function relationships of population codes. Further, we present ideas on how to combine large-scale simultaneous recordings of neural populations, computational models, analyses of behaviour, optogenetics and anatomy to unravel how the structures of correlations might be optimized to serve multiple functions.


Assuntos
Modelos Neurológicos , Neurônios , Potenciais de Ação/fisiologia , Encéfalo/fisiologia , Humanos , Neurônios/fisiologia
2.
J Cell Sci ; 131(5)2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29361543

RESUMO

Development of remote stimulation techniques for neuronal tissues represents a challenging goal. Among the potential methods, mechanical stimuli are the most promising vectors to convey information non-invasively into intact brain tissue. In this context, selective mechano-sensitization of neuronal circuits would pave the way to develop a new cell-type-specific stimulation approach. We report here, for the first time, the development and characterization of mechano-sensitized neuronal networks through the heterologous expression of an engineered bacterial large-conductance mechanosensitive ion channel (MscL). The neuronal functional expression of the MscL was validated through patch-clamp recordings upon application of calibrated suction pressures. Moreover, we verified the effective development of in-vitro neuronal networks expressing the engineered MscL in terms of cell survival, number of synaptic puncta and spontaneous network activity. The pure mechanosensitivity of the engineered MscL, with its wide genetic modification library, may represent a versatile tool to further develop a mechano-genetic approach.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Escherichia coli/genética , Canais Iônicos/genética , Mecanotransdução Celular/genética , Plasticidade Neuronal/genética , Neurônios/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Sobrevivência Celular/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Ativação do Canal Iônico/genética , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/metabolismo , Técnicas de Patch-Clamp , Cultura Primária de Células , Engenharia de Proteínas/métodos , Ratos , Transfecção
3.
Sensors (Basel) ; 17(4)2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28333081

RESUMO

In urban and industrial environments, the constant increase of impermeable surfaces has produced drastic changes in the natural hydrological cycle. Decreasing green areas not only produce negative effects from a hydrological-hydraulic perspective, but also from an energy point of view, modifying the urban microclimate and generating, as shown in the literature, heat islands in our cities. In this context, green infrastructures may represent an environmental compensation action that can be used to re-equilibrate the hydrological and energy balance and reduce the impact of pollutant load on receiving water bodies. To ensure that a green infrastructure will work properly, vegetated areas have to be continuously monitored to verify their health state. This paper presents a ground spectroscopy monitoring survey of a green roof installed at the University of Calabria fulfilled via the acquisition and analysis of hyperspectral data. This study is part of a larger research project financed by European Structural funds aimed at understanding the influence of green roofs on rainwater management and energy consumption for air conditioning in the Mediterranean area. Reflectance values were acquired with a field-portable spectroradiometer that operates in the range of wavelengths 350-2500 nm. The survey was carried out during the time period November 2014-June 2015 and data were acquired weekly. Climatic, thermo-physical, hydrological and hydraulic quantities were acquired as well and related to spectral data. Broadband and narrowband spectral indices, related to chlorophyll content and to chlorophyll-carotenoid ratio, were computed. The two narrowband indices NDVI705 and SIPI turned out to be the most representative indices to detect the plant health status.

4.
Sensors (Basel) ; 15(1): 2205-27, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25609050

RESUMO

Traditional plants for plastic separation in homogeneous products employ material physical properties (for instance density). Due to the small intervals of variability of different polymer properties, the output quality may not be adequate. Sensing technologies based on hyperspectral imaging have been introduced in order to classify materials and to increase the quality of recycled products, which have to comply with specific standards determined by industrial applications. This paper presents the results of the characterization of two different plastic polymers--polyethylene terephthalate (PET) and polyvinyl chloride (PVC)--in different phases of their life cycle (primary raw materials, urban and urban-assimilated waste and secondary raw materials) to show the contribution of hyperspectral sensors in the field of material recycling. This is accomplished via near-infrared (900-1700 nm) reflectance spectra extracted from hyperspectral images acquired with a two-linear-spectrometer apparatus. Results have shown that a rapid and reliable identification of PET and PVC can be achieved by using a simple two near-infrared wavelength operator coupled to an analysis of reflectance spectra. This resulted in 100% classification accuracy. A sensor based on this identification method appears suitable and inexpensive to build and provides the necessary speed and performance required by the recycling industry.


Assuntos
Polietilenotereftalatos/classificação , Cloreto de Polivinila/classificação , Reciclagem , Polietilenotereftalatos/isolamento & purificação , Cloreto de Polivinila/isolamento & purificação , Espectroscopia de Luz Próxima ao Infravermelho
5.
Carbohydr Polym ; 342: 122375, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39048194

RESUMO

Calcium alginate is one of the most widely employed matrices in regenerative medicine. A downside is its heterogeneity, due to the poorly controllable character of the gelation of sodium alginate (NaAlg), i.e. the commonly used alginate salt, with calcium. Here, we have used magnesium alginate (MgAlg) as an alternative precursor of calcium alginate. MgAlg coils, more compact and thus less entangled than those of NaAlg, allow for an easier diffusion of calcium ions, whereas Mg is exchanged with calcium more slowly than Na; this allows for the formation of a material (Ca(Mg)Alg) with a more reversible creep behaviour than Ca(Na)Alg, due to a more homogeneous - albeit lower - density of elastically active cross-links. We also show that Ca(Mg)Alg supports better than Ca(Na)Alg the network development and function of embedded (rat cortical) neurons: they show greater neurite extension and branching at 7 and 21 days (Tubb3 and Map2 immunofluorescence) and better neuronal network functional maturation / more robust and longer-lasting activity, probed by calcium imaging and microelectrode array electrophysiology. Overall, our results unveil the potential of MgAlg as bioactive biomaterial for enabling the formation of functional neuron-based tissue analogues.


Assuntos
Alginatos , Materiais Biocompatíveis , Magnésio , Neurônios , Alginatos/química , Alginatos/farmacologia , Animais , Magnésio/química , Ratos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/citologia , Células Cultivadas , Cálcio/química , Cálcio/metabolismo
6.
PLoS One ; 19(3): e0300127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483951

RESUMO

BACKGROUND: The burden of Parkinson Disease (PD) represents a key public health issue and it is essential to develop innovative and cost-effective approaches to promote sustainable diagnostic and therapeutic interventions. In this perspective the adoption of a P3 (predictive, preventive and personalized) medicine approach seems to be pivotal. The NeuroArtP3 (NET-2018-12366666) is a four-year multi-site project co-funded by the Italian Ministry of Health, bringing together clinical and computational centers operating in the field of neurology, including PD. OBJECTIVE: The core objectives of the project are: i) to harmonize the collection of data across the participating centers, ii) to structure standardized disease-specific datasets and iii) to advance knowledge on disease's trajectories through machine learning analysis. METHODS: The 4-years study combines two consecutive research components: i) a multi-center retrospective observational phase; ii) a multi-center prospective observational phase. The retrospective phase aims at collecting data of the patients admitted at the participating clinical centers. Whereas the prospective phase aims at collecting the same variables of the retrospective study in newly diagnosed patients who will be enrolled at the same centers. RESULTS: The participating clinical centers are the Provincial Health Services (APSS) of Trento (Italy) as the center responsible for the PD study and the IRCCS San Martino Hospital of Genoa (Italy) as the promoter center of the NeuroartP3 project. The computational centers responsible for data analysis are the Bruno Kessler Foundation of Trento (Italy) with TrentinoSalute4.0 -Competence Center for Digital Health of the Province of Trento (Italy) and the LISCOMPlab University of Genoa (Italy). CONCLUSIONS: The work behind this observational study protocol shows how it is possible and viable to systematize data collection procedures in order to feed research and to advance the implementation of a P3 approach into the clinical practice through the use of AI models.


Assuntos
Inteligência Artificial , Doença de Parkinson , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Doença de Parkinson/diagnóstico , Saúde Pública , Estudos Observacionais como Assunto , Estudos Multicêntricos como Assunto
7.
Sensors (Basel) ; 13(11): 14633-49, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24172281

RESUMO

Recent developments in hardware and software have increased the possibilities and reduced the costs of hyperspectral proximal sensing. Through the analysis of high resolution spectroscopic measurements at the laboratory or field scales, this monitoring technique is suitable for quantitative estimates of biochemical and biophysical variables related to the physiological state of vegetation. Two systems for hyperspectral imaging have been designed and developed at DICEA-Sapienza University of Rome, one based on the use of spectrometers, the other on tunable interference filters. Both systems provide a high spectral and spatial resolution with low weight, power consumption and cost. This paper describes the set-up of the tunable filter platform and its application to the investigation of the environmental status of the region crossed by the Sacco river (Latium, Italy). This was achieved by analyzing the spectral response given by tree samples, with roots partly or wholly submerged in the river, located upstream and downstream of an industrial area affected by contamination. Data acquired is represented as reflectance indices as well as reflectance values. Broadband and narrowband indices based on pigment content and carotenoids vs. chlorophyll content suggest tree samples located upstream of the contaminated area are 'healthier' than those downstream.


Assuntos
Monitoramento Ambiental/métodos , Salix/química , Análise Espectral/métodos , Carotenoides/análise , Clorofila/análise , Monitoramento Ambiental/instrumentação , Itália , Análise Espectral/instrumentação
8.
Sensors (Basel) ; 12(8): 10228-47, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23112597

RESUMO

Hyperspectral monitoring of large areas (more than 10 km(2)) can be achieved via the use of a system employing spectrometers and CMOS cameras. A robust and efficient algorithm for automatically combining multiple, overlapping images of a scene to form a single composition (i.e., for the estimation of the point-to-point mapping between views), which uses only the information contained within the images themselves is described here. The algorithm, together with the 2D fast Fourier transform, provides an estimate of the displacement between pairs of images by accounting for rotations and changes of scale. The resulting mosaic was successively georeferenced within the WGS-84 geographic coordinate system. This paper also addresses how this information can be transferred to a push broom type spectral imaging device to build the hyperspectral cube of the area prior to land classification. The performances of the algorithm were evaluated using sample images and image sequences acquired during a proximal sensing field campaign conducted in San Teodoro (Olbia-Tempio-Sardinia). The hyperspectral cube closely corresponds to the mosaic. Mapping allows for the identification of objects within the image and agrees well with ground-truth measurements.

9.
ACS Omega ; 7(29): 25152-25163, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35910169

RESUMO

Industrial bioreactors featuring inadequate geometry and operating conditions may depress the effectiveness and the efficiency of the hosted bioprocess. Computational fluid dynamics (CFD) can be used to find a suitable operating match between the target bioprocess and the available bioreactor. The aim of this work is to investigate the feasibility of addressing bioreactor improvement problems in the bioprocess industry with the aid of such mainstream tools as industry-standard CFD. This study illustrates how to effectively simulate both the impeller rotation and air supply and discusses the way toward model validation at the 4.1 m3 capacity scale. Referring to experimentally measured process values, the developed full-scale model successfully predicted the power draw, liquid phase level, and mixing time with errors lower than 4.6, 1.1, and 6.7%, respectively, thus suggesting the illustrated approach as a best practice design method for the bioprocess industry. The validated model was employed to improve performance by reducing the power draw in aerated conditions with a minimal operational derating.

10.
Brain Inform ; 9(1): 18, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927517

RESUMO

Two-photon fluorescence calcium imaging allows recording the activity of large neural populations with subcellular spatial resolution, but it is typically characterized by low signal-to-noise ratio (SNR) and poor accuracy in detecting single or few action potentials when large number of neurons are imaged. We recently showed that implementing a smart line scanning approach using trajectories that optimally sample the regions of interest increases both the SNR fluorescence signals and the accuracy of single spike detection in population imaging in vivo. However, smart line scanning requires highly specialised software to design recording trajectories, interface with acquisition hardware, and efficiently process acquired data. Furthermore, smart line scanning needs optimized strategies to cope with movement artefacts and neuropil contamination. Here, we develop and validate SmaRT2P, an open-source, user-friendly and easy-to-interface Matlab-based software environment to perform optimized smart line scanning in two-photon calcium imaging experiments. SmaRT2P is designed to interface with popular acquisition software (e.g., ScanImage) and implements novel strategies to detect motion artefacts, estimate neuropil contamination, and minimize their impact on functional signals extracted from neuronal population imaging. SmaRT2P is structured in a modular way to allow flexibility in the processing pipeline, requiring minimal user intervention in parameter setting. The use of SmaRT2P for smart line scanning has the potential to facilitate the functional investigation of large neuronal populations with increased SNR and accuracy in detecting the discharge of single and few action potentials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA