Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Liver Int ; 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800487

RESUMO

Acute-on-chronic liver failure (ACLF) is a syndrome that develops in approximately 30% of patients hospitalised with cirrhosis and is characterised by an acute decompensation of liver function associated with extra-hepatic organ failures and a high short-term mortality. At present, no specific therapies are available for ACLF, and current management is limited to treatment of the precipitating event and organ support. Given the high prevalence and high mortality of this severe liver disease, there is an urgent need for targeted treatments. There is increasing evidence of the important role played by systemic inflammation and immune dysfunction in the pathophysiology of ACLF and a better understanding of these immune processes is resulting in new therapeutic targets. The aim of this review is to present an overview of ongoing studies of potentially promising therapies and how they could be utilised in the management of ACLF.

2.
Development ; 146(24)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31767620

RESUMO

The murine developing epicardium heterogeneously expresses the transcription factors TCF21 and WT1. Here, we show that this cell heterogeneity is conserved in human epicardium, regulated by BNC1 and associated with cell fate and function. Single cell RNA sequencing of epicardium derived from human pluripotent stem cells (hPSC-epi) revealed that distinct epicardial subpopulations are defined by high levels of expression for the transcription factors BNC1 or TCF21. WT1+ cells are included in the BNC1+ population, which was confirmed in human foetal hearts. THY1 emerged as a membrane marker of the TCF21 population. We show that THY1+ cells can differentiate into cardiac fibroblasts (CFs) and smooth muscle cells (SMCs), whereas THY1- cells were predominantly restricted to SMCs. Knocking down BNC1 during the establishment of the epicardial populations resulted in a homogeneous, predominantly TCF21high population. Network inference methods using transcriptomic data from the different cell lineages derived from the hPSC-epi delivered a core transcriptional network organised around WT1, TCF21 and BNC1. This study unveils a list of epicardial regulators and is a step towards engineering subpopulations of epicardial cells with selective biological activities.


Assuntos
Linhagem da Célula/genética , Proteínas de Ligação a DNA/fisiologia , Pericárdio/citologia , Células-Tronco Pluripotentes/fisiologia , Fatores de Transcrição/fisiologia , Diferenciação Celular/genética , Células Cultivadas , Feminino , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia , Pericárdio/metabolismo , Células-Tronco Pluripotentes/citologia , Gravidez , Cultura Primária de Células , Células-Tronco Totipotentes/citologia , Células-Tronco Totipotentes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA