Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34949641

RESUMO

Enrichment or depletion ranging from -40 to +100% in the major isotopes 16O and 24Mg were observed experimentally in solids condensed from carbonaceous plasma composed of CO2/MgCl2/Pentanol or N2O/Pentanol for O and MgCl2/Pentanol for Mg. In NanoSims imaging, isotope effects appear as micrometer-size hotspots embedded in a carbonaceous matrix showing no isotope fractionation. For Mg, these hotspots are localized in carbonaceous grains, which show positive and negative isotopic effects so that the whole grain has a standard isotope composition. For O, no specific structure was observed at hotspot locations. These results suggest that MIF (mass-independent fractionation) effects can be induced by chemical reactions taking place in plasma. The close agreement between the slopes of the linear correlations observed between δ25Mg versus δ26Mg and between δ17O versus δ18O and the slopes calculated using the empirical MIF factor η discovered in ozone [M. H. Thiemens, J. E. Heidenreich, III. Science 219, 1073-1075; C. Janssen, J. Guenther, K. Mauersberger, D. Krankowsky. Phys. Chem. Chem. Phys 3, 4718-4721] attests to the ubiquity of this process. Although the chemical reactants used in the present experiments cannot be directly transposed to the protosolar nebula, a similar MIF mechanism is proposed for oxygen isotopes: at high temperature, at the surface of grains, a mass-independent isotope exchange could have taken place between condensing oxides and oxygen atoms originated form the dissociation of CO or H2O gas.

2.
Science ; 379(6634): eabn9057, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821663

RESUMO

Samples of the carbonaceous asteroid (162173) Ryugu were collected and brought to Earth by the Hayabusa2 spacecraft. We investigated the macromolecular organic matter in Ryugu samples and found that it contains aromatic and aliphatic carbon, ketone, and carboxyl functional groups. The spectroscopic features of the organic matter are consistent with those in chemically primitive carbonaceous chondrite meteorites that experienced parent-body aqueous alteration (reactions with liquid water). The morphology of the organic carbon includes nanoglobules and diffuse carbon associated with phyllosilicate and carbonate minerals. Deuterium and/or nitrogen-15 enrichments indicate that the organic matter formed in a cold molecular cloud or the presolar nebula. The diversity of the organic matter indicates variable levels of aqueous alteration on Ryugu's parent body.

3.
Proc Natl Acad Sci U S A ; 106(26): 10522-7, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19528640

RESUMO

Pristine meteoritic materials carry light element isotopic fractionations that constrain physiochemical conditions during solar system formation. Here we report the discovery of a unique xenolith in the metal-rich chondrite Isheyevo. Its fine-grained, highly pristine mineralogy has similarity with interplanetary dust particles (IDPs), but the volume of the xenolith is more than 30,000 times that of a typical IDP. Furthermore, an extreme continuum of N isotopic variation is present in this xenolith: from very light N isotopic composition (delta(15)N(AIR) = -310 +/- 20 per thousand), similar to that inferred for the solar nebula, to the heaviest ratios measured in any solar system material (delta(15)N(AIR) = 4,900 +/- 300 per thousand). At the same time, its hydrogen and carbon isotopic compositions exhibit very little variation. This object poses serious challenges for existing models for the origin of light element isotopic anomalies.


Assuntos
Meio Ambiente Extraterreno , Meteoroides , Sistema Solar , Poeira Cósmica , Temperatura Alta , Compostos de Ferro/química , Compostos de Magnésio/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Minerais/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Isótopos de Nitrogênio/química , Tamanho da Partícula , Material Particulado/química , Silicatos/química , Espectrometria por Raios X
4.
Astrobiology ; 6(6): 838-50, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17155884

RESUMO

A NanoSIMS ion microprobe was used to map the submicron-scale distributions of carbon, nitrogen, sulfur, silicon, and oxygen in organic microfossils and laminae in a thin section of the approximately 0.85 billion year old Bitter Springs Formation of Australia. The data provide clues about the original chemistry of the microfossils, the silicification process, and the biosignatures of specific microorganisms and microbial communities. Chemical maps of fossil unicells and filaments revealed distinct wall- and sheath-like structures enriched in C, N, and S, consistent with their accepted biological origin. Surprisingly, organic laminae, previously considered to be amorphous, also exhibited filamentous and apparently compressed spheroidal structures defined by strong enrichments in C, N, and S. By analogy to NanoSIMS data from the well-preserved microfossils, these structures were interpreted as being of biological origin, most likely representing densely packed remnants of microbial mats. Given that the preponderance of organic matter in Precambrian sediments is similarly "amorphous," our findings indicate that a re-evaluation of ancient specimens via in situ structural, chemical, and isotopic study is warranted. Our analyses have led us to propose new criteria for assessing the biogenicity of problematic kerogenous materials, and, thus, these criteria can be applied to assessments of poorly preserved or fragmentary organic residues in early Archean sediments and any that might occur in meteorites or other extraterrestrial samples.


Assuntos
Archaea/química , Fósseis , Sedimentos Geológicos/análise , Espectrometria de Massa de Íon Secundário/métodos , Arqueologia , Austrália , Microscopia Eletrônica de Varredura
5.
Astrobiology ; 10(4): 413-24, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20528196

RESUMO

The origin of organic microstructures in the approximately 3 Ga Farrel Quartzite is controversial due to their relatively poor state of preservation, the Archean age of the cherts in which they occur, and the unusual spindle-like morphology of some of the forms. To provide more insight into the significance of these microstructures, nano-scale secondary ion mass spectrometry (NanoSIMS) maps of carbon, nitrogen, sulfur, silicon, and oxygen were obtained for spheroidal and spindle-shaped constituents of the Farrel Quartzite assemblage. Results suggest that the structures are all bona fide approximately 3 Ga microfossils. The spindles demonstrate an architecture that is remarkable for 3 Ga organisms. They are relatively large, robust, and morphologically complex. The NanoSIMS element maps corroborate their complexity by demonstrating an intricate, internal network of organic material that fills many of the spindles and extends continuously from the body of these structures into their spearlike appendages. Results from this study combine with previous morphological and chemical analyses to argue that the microstructures in the Farrel Quartzite comprise a diverse assemblage of Archean microfossils. This conclusion adds to a growing body of geochemical, stromatolitic, and morphological evidence that indicates the Archean biosphere was varied and well established by at least approximately 3 Ga. Together, the data paint a picture of Archean evolution that is one of early development of morphological and chemical complexity. The evidence for Archean evolutionary innovation may augur well for the possibility that primitive life on other planets could adapt to adverse conditions by ready development of diversity in form and biochemistry.


Assuntos
Biodiversidade , Ecossistema , Fósseis , Nanoestruturas/química , Espectrometria de Massa de Íon Secundário/métodos , Nanotecnologia , Fatores de Tempo , Austrália Ocidental
6.
Science ; 314(5806): 1724-8, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17170292

RESUMO

Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild 2 particle fragments; however, extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Nonterrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single (17)O-enriched circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is (16)O-enriched, like refractory inclusions in meteorites, suggesting that Wild 2 contains material formed at high temperature in the inner solar system and transported to the Kuiper belt before comet accretion.


Assuntos
Isótopos de Carbono/análise , Deutério/análise , Isótopos/análise , Meteoroides , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise , Hidrogênio/análise , Neônio/análise , Gases Nobres/análise , Astronave
7.
Science ; 314(5806): 1720-4, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17170291

RESUMO

Organics found in comet 81P/Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some organics are similar, but not identical, to those in interplanetary dust particles and carbonaceous meteorites. A class of aromatic-poor organic material is also present. The organics are rich in oxygen and nitrogen compared with meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than are meteorites and interplanetary dust particles. The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage. Although the variable extent of modification of these materials by impact capture is not yet fully constrained, a diverse suite of organic compounds is present and identifiable within the returned samples.


Assuntos
Meteoroides , Compostos Orgânicos/análise , Carbono/análise , Poeira Cósmica/análise , Deutério/análise , Nitrogênio/análise , Isótopos de Nitrogênio/análise , Oxigênio/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Astronave
8.
Science ; 314(5806): 1735-9, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17170295

RESUMO

The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA