Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 235(6): 2406-2423, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35704043

RESUMO

The analysis of plant elemental composition and the underlying factors affecting its variation are a current hot topic in ecology. Ecological adaptation to atypical soils may shift plant elemental composition. However, no previous studies have evaluated its relevance against other factors such as phylogeny, climate or individual soil conditions. We evaluated the effect of the phylogeny, environment (climate, soil), and affinity to gypsum soils on the elemental composition of 83 taxa typical of Iberian gypsum ecosystems. We used a new statistical procedure (multiple phylogenetic variance decomposition, MPVD) to decompose total explained variance by different factors across all nodes in the phylogenetic tree of target species (covering 120 million years of Angiosperm evolution). Our results highlight the relevance of phylogeny on the elemental composition of plants both at early (with the development of key preadaptive traits) and recent divergence times (diversification of the Iberian gypsum flora concurrent with Iberian gypsum deposit accumulation). Despite the predominant phylogenetic effect, plant adaptation to gypsum soils had a strong impact on the elemental composition of plants, particularly on sulphur concentrations, while climate and soil effects were smaller. Accordingly, we detected a convergent evolution of gypsum specialists from different lineages on increased sulphur and magnesium foliar concentrations.


Assuntos
Sulfato de Cálcio , Ecossistema , Filogenia , Plantas/genética , Solo , Enxofre
2.
Plants (Basel) ; 12(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36904023

RESUMO

Gypsum covers a vast area of the Iberian Peninsula, making Spain a leader in its production. Gypsum is a fundamental raw material for modern societies. However, gypsum quarries have an obvious impact on the landscape and biodiversity. Gypsum outcrops host a high percentage of endemic plants and unique vegetation, considered a priority by the EU. Restoring gypsum areas after mining is a key strategy to prevent biodiversity loss. For the implementation of restoration approaches, understanding vegetation's successional processes can be of invaluable help. To fully document the spontaneous succession in gypsum quarries and to evaluate its interest for restoration, 10 permanent plots of 20 × 50 m were proposed, with nested subplots, in which vegetation change was recorded for 13 years in Almeria (Spain). Through Species-Area Relationships (SARs), these plots' floristic changes were monitored and compared to others in which an active restoration was carried out, as well as others with natural vegetation. Furthermore, the successional pattern found was compared to those recorded in 28 quarries distributed throughout the Spanish territory. The results show that an ecological pattern of spontaneous primary auto-succession is widely recurring in Iberian gypsum quarries, which is capable of regenerating the pre-existing natural vegetation.

3.
Int J Mol Sci ; 13(9): 11861-11869, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23109887

RESUMO

Polymorphic microsatellite markers were developed for the Ibero-North African, strict gypsophyte Lepidium subulatum to unravel the effects of habitat fragmentation in levels of genetic diversity, genetic structure and gene flow among its populations. Using 454 pyrosequencing 12 microsatellite loci including di- and tri-nucleotide repeats were characterized in L. subulatum. They amplified a total of 80 alleles (2-12 alleles per locus) in a sample of 35 individuals of L. subulatum, showing relatively high levels of genetic diversity, H(O) = 0.645, H(E) = 0.627. Cross-species transferability of all 12 loci was successful for the Iberian endemics Lepidium cardamines, Lepidium stylatum, and the widespread, Lepidium graminifolium and one species each of two related genera, Cardaria draba and Coronopus didymus. These microsatellite primers will be useful to investigate genetic diversity, population structure and to address conservation genetics in species of Lepidium.


Assuntos
Transferência Genética Horizontal , Loci Gênicos , Lepidium , Repetições de Microssatélites , Filogenia , Polimorfismo Genético , Lepidium/classificação , Lepidium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA