Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 15: 766, 2014 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-25194793

RESUMO

BACKGROUND: Small RNA (sRNA) has been described as a regulator of gene expression. In order to understand the role of maize sRNA (Zea mays-hybrid UENF 506-8) during association with endophytic nitrogen-fixing bacteria, we analyzed the sRNA regulated by its association with two diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. RESULTS: Deep sequencing analysis was done with RNA extracted from plants inoculated with H. seropedicae, allowing the identification of miRNA and siRNA. A total of 25 conserved miRNA families and 15 novel miRNAs were identified. A dynamic regulation in response to inoculation was also observed. A hypothetical model involving copper-miRNA is proposed, emphasizing the fact that the up-regulation of miR397, miR398, miR408 and miR528, which is followed by inhibition of their targets, can facilitate association with diazotrophic bacteria. Similar expression patterns were observed in samples inoculated with A. brasilense. Moreover, novel miRNA and siRNA were classified in the Transposable Elements (TE) database, and an enrichment of siRNA aligned with TE was observed in the inoculated samples. In addition, an increase in 24-nt siRNA mapping to genes was observed, which was correlated with an increase in methylation of the coding regions and a subsequent reduction in transcription. CONCLUSION: Our results show that maize has RNA-based silencing mechanisms that can trigger specific responses when plants interact with beneficial endophytic diazotrophic bacteria. Our findings suggest important roles for sRNA regulation in maize, and probably in other plants, during association with diazotrophic bacteria, emphasizing the up-regulation of Cu-miRNA.


Assuntos
Bactérias , Endófitos , MicroRNAs/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Zea mays/genética , Zea mays/microbiologia , Bactérias/metabolismo , Mapeamento Cromossômico , Biologia Computacional , Elementos de DNA Transponíveis , Bases de Dados de Ácidos Nucleicos , Endófitos/metabolismo , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Estudo de Associação Genômica Ampla , Metilação , Fixação de Nitrogênio , Fenótipo , Splicing de RNA , Simbiose , Zea mays/crescimento & desenvolvimento
2.
Curr Biol ; 31(10): R547-R552, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34033788

RESUMO

A central role of cell division in the life of multicellular plants is underlined by the fact that plants cannot move, in contrast to multicellular animals. Hence, cell division in plants fulfills not only a developmental task sensu stricto (for example, formation of organs, tissues and cell types) but also is key for adaptation to environmental conditions, presumably more so than in animals, by enhancing, reducing, as well as redirecting cell divisions, and thus adjusting growth.


Assuntos
Células Vegetais , Plantas , Aclimatação , Animais , Divisão Celular , Microtúbulos
3.
PLoS One ; 9(4): e93822, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24695493

RESUMO

Plants have developed multiple regulatory mechanisms to respond and adapt to stress. Drought stress is one of the major constraints to agricultural productivity worldwide and recent reports have highlighted the importance of plant sRNA in the response and adaptation to water availability. In order to increase our understanding of the roles of sRNA in response to water depletion, cultivars of sugarcane were submitted to treatment of ceasing drip irrigation for 24 hours. Deep sequencing analysis was carried out to identify the sRNA regulated in leaves and roots of sugarcane cultivars with different drought sensitivities. The pool of sRNA selected allowed the analysis of different sRNA classes (miRNA and siRNA). Twenty-eight and 36 families of conserved miRNA were identified in leaf and root libraries, respectively. Dynamic regulation of miRNA was observed and the expression profiles of eight miRNA were verified in leaf samples from three biological replicates by stem-loop qRT-PCR assay using the cultivars: SP90-1638--sensitive cultivar--and SP83-2847 and SP83-5073--tolerant cultivars. Altered miRNA regulation was correlated with changes in mRNA levels of specific targets. Two leaf libraries from individual sugarcane cultivars with contrasting drought-tolerance properties were also analyzed. An enrichment of 22-nt sRNA species was observed in leaf libraries. 22-nt miRNA triggered siRNA production by cleavage of their targets in response to water depletion. A number of genes of the sRNA biogenesis pathway were down-regulated in tolerant genotypes and up-regulated in sensitive in response to water depletion treatment. Our analysis contributes to increase the knowledge on the roles of sRNA in sugarcane submitted to water depletion.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , RNA de Plantas/metabolismo , Saccharum/genética , Estresse Fisiológico/fisiologia , RNA de Plantas/genética , Saccharum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA