Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(45): 31040-31049, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37942877

RESUMO

Marbles constitute a significant family of materials, for antiquities, as well as modern constructions. Herein, we have studied Greek marbles, using electron paramagnetic resonance (EPR) and solid-state nuclear magnetic resonance (ssNMR) spectroscopies, focusing on their structural microenvironment. Spin-Hamiltonian parameters derived from EPR spectra of naturally occurring 55Mn2+ (S = 5/2, I = 5/2) atoms in marbles, were studied as structural-probes. EPR data at 300 K provide a library of 55Mn2+ zero-field-splitting parameters (E, D). The effect of temperature (300 up to 700 K) on 55Mn2+-ZFS (E, D) and the strain of the D-tensor (Dstrain) was studied by high-temperature EPR spectroscopy. The EPR data, combined with 13C-ssNMR, provide detailed physicochemical information of the calcite and dolomite crystal phases in the marbles. In parallel, we have analyzed the lattice-microstrain (ε0) of the marbles' crystallites using high-resolution XRD data. Analysis of the correlation between the D-values of Mn2+ centers and (ε0)-XRD, reveals trends that reflect the provenance of the marbles. In this context, we discuss the correlation between the D-values of Mn2+ centers and (ε0)-microstrain as a novel tool to elucidate the provenance of marbles.

2.
Inorg Chem ; 61(20): 7847-7858, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35523200

RESUMO

Increasing global environmental pollution due to heavy metal ions raises the importance of research on new multifunctional materials for simultaneous detection and removal of these contaminants from water resources. In this study, we report a microporous 8-connected Zr4+ metal-organic framework (MOF) based on a terephthalate ligand decorated with a chelating 2-picolylamine side group (dMOR-2), which shows highly efficient fluorescence sensing and sorption of heavy metal cations. We demonstrate by detailed fluorescence studies the ability of a water-dispersible composite of dMOR-2 with polyvinylpyrrolidone for real-time detection of Cu2+, Pb2+, and Hg2+ in aqueous media. The limits of detection were found to be below 2 ppb for these species, while the system's performance is not affected by the presence of other potentially competitive ions. In addition, sorption studies showed that a composite of dMOR-2 with calcium alginate (dMOR-2@CaA) is an excellent sorbent for Pb2+ and Cu2+ ions with capacities of 376 ± 15 and 117 ± 4 mg per gram of dMOR-2@CaA, respectively, while displaying the capability for simultaneous removal of various heavy metal ions in low initial concentrations and in the presence of large excesses of other cationic species. Structural and spectroscopic studies with model ligands analogous to our material's receptor unit showed chelation to the 2-picolylamine moiety to be the main binding mode of metal ions to dMOR-2. Overall, dMOR-2 is shown to represent a rare example of a MOF, which combines sensitive fluorescence detection and high sorption capacity for heavy metal ions.


Assuntos
Estruturas Metalorgânicas , Metais Pesados , Corantes , Íons , Chumbo , Estruturas Metalorgânicas/química , Água
3.
Nanomaterials (Basel) ; 11(4)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916435

RESUMO

The oxygen reduction reaction (ORR) is the rate-limiting reaction in the cathode side of fuel cells. In the quest for alternatives to Pt-electrodes as cathodes in ORR, appropriate transition metal oxide-based electrocatalysts are needed. In the present work, we have synthesized Co3O4 and CoO/Co3O4 nanostructures using flame spray pyrolysis (FSP), as electrocatalysts for ORR in acidic and alkaline media. A detailed study of the effect of (Co-oxide)/Pt ratio on ORR efficiency shows that the present FSP-made Co-oxides are able to perform ORR at very low-Pt loading, 0.4% of total metal content. In acid medium, an electrode with (5.2% Pt + 4.8% Co3O4), achieved the highest ORR performance (Jmax = 8.31 mA/cm2, E1/2 = 0.66 V). In alkaline medium, superior performance and stability have been achieved by an electrode with (0.4%Pt + 9.6% (CoO/Co3O4)) with ORR activity (Jmax = 3.5 mA/cm2, E1/2 = 0.08 V). Using XRD, XPS, Raman and TEM data, we discuss the structural and electronic aspects of the FSP-made Co-oxide catalysts in relation to the ORR performance. Cyclic voltammetry data indicate that the ORR process involves active sites associated with Co3+ cations at the cobalt oxide surface. Technology-wise, the present work demonstrates that the developed FSP-protocols, constitutes a novel scalable process for production of co-oxides appropriate for oxygen reduction reaction electrodes.

4.
Biosens Bioelectron ; 132: 286-293, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30884315

RESUMO

Hydrogen peroxide (H2O2) quantification in biomedicine is valuable as inflammation biomarker but also in assays employing enzymes that generate or consume H2O2 linked to a specific biomarker. Optical H2O2 detection is typically performed through peroxidase-coupled reactions utilizing organic dyes that suffer, however, from poor stability/reproducibility and also cannot be employed in situ in dynamic complex cell cultures to monitor H2O2 levels in real-time. Here, we utilize enzyme-mimetic CeO2 nanocrystals that are sensitive to H2O2 and study the effect of H2O2 presence on their electronic and luminescent properties. We produce and dope with Eu3+ these particles in a single-step by flame synthesis and directly deposit them on Si and glass substrates to fabricate nanoparticle layers to monitor in real-time and in situ the H2O2 concentrations generated by Streptococcus pneumoniae clinical isolates. Furthermore, the small CeO2:Eu3+ nanocrystals are combined in a single-step with larger, non-responsive Y2O3:Tb3+ nanoparticles during their double-nozzle flame synthesis to engineer hybrid luminescent nanoaggregates as ratiometric robust biosensors. We demonstrate the functionality of these biosensors by monitoring their response in the presence of a broad range of H2O2 concentrations in vitro from S. pneumoniae, highlighting their potential for facile real-time H2O2 detection in vitro in cell cultures.


Assuntos
Técnicas Biossensoriais/métodos , Cério/química , Európio/química , Peróxido de Hidrogênio/análise , Substâncias Luminescentes/química , Nanopartículas/química , Streptococcus pneumoniae/metabolismo , Técnicas de Cultura de Células , Humanos , Peróxido de Hidrogênio/metabolismo , Luminescência , Infecções Pneumocócicas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA